
CS107L Handout 07
Autumn 2007 November 16, 2007

Advanced Inheritance and Virtual Methods

Employee.h
class Employee {

public:
Employee(const string& name, double attitude, double wage);
virtual ~Employee();

const string& getName() const;
const double getWage() const;

virtual double getSalary() const;
virtual double getProductivity() const;
virtual void print() const;

private:
string name;
double attitude, wage;
int hours;
static const int kFullTime = 40;

};

Boss.h

class Boss: public Employee {
public:

Boss(const string& name, const string& title, double attitude, double wage);
virtual ~Boss();

void setUnderling(Employee *u);
Employee *getUnderling() const;

virtual double getSalary() const;
virtual double getProductivity() const;
virtual void print() const;

private:
Employee *underling;
string title;

};

Compile-time type versus run-time type. Consider the parameter to this function:

void DynamicPrint(Employee *e)
{

e->print();
}

The compile-time type of the parameter is exactly Employee *. But when a variable is
declared as a Employee * (or Employee&), that doesn't guarantee that at run-time it
points to an Employee—only that it will be something that is at least an Employee. At

2

run-time, the pointer could point to an Employee or a Boss or any Employee subclass,
and the run-time type can be different for different invocations of the function.

Due to compile-time type checking, within the DynamicPrint function, you can send
this variable only those messages understood by Employees (and not those specific to
Boss). These messages are safe for all Employee subclasses since they inherit all the
behavior of their superclass.

If instead the parameter was declared as an object, not a pointer or reference:

void StaticPrint(Employee e)
{

e.print();
}

The compile-time type and the run-time type are both exactly Employee. For example,
since Employees and Bosses are not necessarily the same size, it is impossible for a
Boss object to be wedged into an Employee-sized space.

Compile-time binding versus run-time binding.
Go back to considering the DynamicPrint function from above. What happens when
we try to send the print method to the parameter? If it is really pointing to an
Employee, we expect that it will invoke Employee's print method, and that's fine. But
what if the parameter is really pointing to a Boss which has its own overridden version
of the print method?

C++ defaults to compile-time binding, which indicates the compiler makes the decision at
compile time about which version of an overridden method to invoke. Since it is
committing at compile time, it has to go with the compile-time type, so in this case it will
choose to always use Employee's print method, ignoring the possibility that
subclasses might provide a replacement.

This most likely is not what you intended. If Boss overrides print, you expect that any
time you send a Boss a print message (no matter what the CT type you are working
with is), it should invoke the Boss's version of the method. Given that OO
programming was supposed to be all about making objects responsible for their own
behavior, it’s unimpressive that it can be so easily convinced to invoke the wrong
version!

What makes more sense is to use run-time binding where the decision about which
version of the method to invoke is delayed until run-time. At the point when the
DynamicPrint function is called, it can determine what the actual RT type is and
dispatch to the correct print function for that type. This means if you call Apple passing
an Employee object, it uses Employee's print and if you later call DynamicPrint
passing a Boss object, it uses Boss's version of print.

3

Declaring methods virtual.
In C++, run-time binding is enabled on a per-method basis (although some compilers
have an option to make all methods virtual even though it’s not the standard). In
order to make a particular method RT bound, you declare it virtual. Mark it virtual in
the parent class, which makes it virtual for all subclasses, whether or not they repeat
the virtual keyword on their overridden definitions. In general, you tend to want to
make almost all methods virtual (there are a few exceptions discussed below) so that
you guarantee that the right method is sent to the object without fail.

Note that RT binding only applies to those objects accessed through pointers or
references. If you are working with an actual object, its CT and RT types are one and the
same (for example, consider the StaticPrint function above) and thus there is never
any difference between the CT and RT types, so it might as well bind at CT.

Constructors aren't inherited and can't be virtual.
Constructors are very tightly bound up with a class and each class has its own unique set
of constructors. If Employee defines a 3-arg constructor, Boss does not inherit that
constructor. If it wants to provide such a constructor, it must declare it again and just
pass the arguments along to the base class constructor in the constructor initialization
list. It is nonsensical to declare a constructor virtual since a constructor is always called
by name (Employee("Sally"...) or Boss("Jane"...)) so there is no choice about
which version to invoke.

Destructors aren't inherited, but should be virtual.
Like constructors, destructors are tightly bound with a class and each class has exactly
one destructor of its own. If you don't provide a destructor, the compiler will synthesize
one for you that will call the destructors of your member objects and base class and do
nothing with your other data members. Note that whether you define your own or let
the compiler do it for you, the destruction process will always take care of calling the
superclass destructor when finished with the subclass destructor—you never explicitly
invoke your parent destructor.

The destructor needs to be virtual for the same reason that normal methods are
virtual: You want to be sure the correct destructor is called, using the RT type of the
object, not the CT type.

4

Consider the Terminate function:

void Terminate(Employee *e)
{

delete e;
}

If the Employee destructor is not virtual, the use of delete here will be CT-bound and
commit to invoking the Employee class destructor. However, if at RT the parameter
was really pointing to a Boss, we really need to use the Boss's destructor to clean up the
any dynamically allocated parts of a Boss object. If you declare the base class destructor
as virtual, it defers the decision about which destructor to invoke until RT and then
makes the correct choice. Note that declaring the destructor virtual makes the
destructor of all subclasses virtual even though the names do not quite match
(~Employee -> ~Boss).

Some compilers (g++, for example) will warn if you define a class with virtual
methods but a non-virtual destructor.

Assigning/copying a derived to a base "slices" the object.
If I have an object of a derived class and try to assign/copy from an object of the base
class, what happens? First consider the definition of the assignment operator/copy
constructor (whether explicitly defined or synthesized by the compiler). In the
Employee class, operator= it will take a reference to an Employee object. It's
completely fine to pass it a reference to a Boss object, since a Boss can always safely
stand if for an Employee. In the copy/assign operator, it will copy the Employee part
of the Boss object and ignore the extra Boss fields, in a sense, "slicing" out the employee
fields and throwing the rest away. The result is an Employee object that has the same
Employee data as the Boss object did, but none of the Boss fields or behavior is kept.

void Raspberry()
{

Employee bob("Bob", 0.8, 10.0);
Boss sally("Sally", 0.55, 25.0, "Lead Architect");

bob = sally; // "slices" off extra fields
bob.print(); // Bob is an *Employee* so uses Employee version

}

The same thing is true for the copy constructor. For example, the copy constructor is
invoked when passing and returning objects by value. If I were to pass sally to the
StaticPrint function from above, the parameter would be a copy of just the
Employee fields from sally. Slicing is yet another reason to avoid passing object
parameters by value.

Be sure that you understand how slicing is different than the "upcast" operation where
we assign a Boss * to an Employee *. In that case, we have not thrown away any

5

information and if we're correctly using virtual methods, we won't lose any behavior
either. Declaring a parameter as a reference/pointer to the base is simply generalizing
the allowable type so that all derived types can be easily used.

Assigning/copying a base to a derived is not allowed.
In general, copying/assignment in the other direction is not allowed. The rationale goes
something like this: If I were to try to assign a Boss from an Employee object, I could
copy all the Employee fields, but the extra fields of a Boss would left uninitialized. This
unsafe operation conflicts with C++'s strong commitment to ensuring all data is
initialized before being used.

To be more mechanical about it, consider the compiler-synthesized definitions of the
assignment/copy constructor for the Boss class. It takes a const Boss& as its
parameter. Can I pass an Employee& to a function that needs a Boss&? Nope, an
Employee does not necessarily have all the data and methods that a Boss does. To
make assignment work in the other direction, the Boss class could define a version of
operator= that took an Employee, copied the Employee fields and do something
reasonable with the remaining fields. In truth, this is not the common a need (to assign
objects of different classes back and forth), but it can be done if necessary.

Calling virtual methods inside other methods.
The binding of methods called from within other methods is basically just like other
bindings. For example, assume the body of Employee::print makes a call to
getSalary(). If getSalary is not declared virtual, the compiler binds the call at CT
and within the print method of Employee "this" is of type Employee *, so it
commits to using Employee's version. If getSalary is declared virtual, it waits until
the print method is called at RT, at which point the true identity of the object is used to
decide which version of getSalary is appropriate. It makes no difference whether the
print method itself is declared virtual in deciding how to bind calls to other methods
made within the print method.

Calling virtual functions in constructors/destructors.
The one place where virtual dispatch doesn't enter into the game is within
constructors and destructors. If you make a call to a virtual function, such as print,
within the Employee constructor or destructor, it will always invoke the Employee
version of print. Even if we are constructing this Employee object as part of the
constructor of an eventual Boss object, at the time of the call to the Employee
constructor, the object is actually just an Employee and thus responds like an Employee.
Similarly on destruction, if a Boss object is being destructed, it first calls its own
destructor, "stops being a Boss" and then goes on to its parent destructor. At the time of
the call to Employee destructor, the object is no longer a Boss, it's just an Employee,
and is unwinding back to its beginnings. So in a constructor/destructor the object is
always of the stated CT type without exceptions. The rationale for this is that the

6

virtual function may rely on part of the extra state of a Boss (such as the title field)
and it will not be safe to call it before the Boss construction process has occurred, or
after the Boss destruction has already happened.

Overriding versus overloading.
Overloading a method or function allows you to create functions of the same name that
take different arguments. Overriding a method allows to replace an inherited method
with a different implementation under the same name. Most often, the overridden
method will have the same number and types of arguments, since it is intended to be a
matching replacement. What happens when it doesn't? For example, let's say we added
the some promote methods to the Employee class:

void promote(int additionalDaysOff);
void promote(double percentRaise);

This method is overloaded and it chooses between the two available versions depending
on whether called with an int or a double. Usually, Boss inherits both of these
versions. Now, let's say Boss wants to introduce its own version of promote, this one
taking a string which identifies a new title for the Boss:

void promote(const string& newTitle);

You might like/think/hope that the Boss would now have all three versions of
promote, but that isn't the way it works. In this case, the Boss's override of promote
completely shadows all previous versions of promote, no matter what the arguments
are. If we want Boss to have versions of promote that take int and double, we would
need to redefine them in the Boss class and just provide a wrapper that calls the
inherited version, something like this:

void promote(int additionalDaysOff) { Employee::promote(additionalDaysOff);}
void promote(double percentRaise) { Employee::promote(percentRaise);}

Seems a little awkward, but that's C++ for ya. The idea is to avoid nasty surprises where
you end up getting a different inherited version when the subclass was trying to replace
all of the parent's implementation of that method. (There is also a solution involving the
using directive.)

7

Multi-Methods
A multi-method is a method that is chosen according to the dynamic type of more than
one object. They tend to be useful when dealing with interactions between two objects.
As we have seen, virtual functions allow the run-time resolution of a method based
on the dynamic type of the receiving object. However, a parameter to a function can
only be matched according to its static type. This limits us to determining which
method to call to the dynamic type of one object (the object upon which the method is
invoked). C++ has no built-in support for multi-methods. Other languages, such as
CLOS, do have support for these. Assume we have an intersect method which tells us if
two shapes intersect:

class Shape {
...
virtual bool intersect(const Shape *s) = 0;
...

};

class Rectangle : public Shape {
...
virtual bool intersect(const Shape *s);
...

};

class Circle : public Shape {
...
virtual bool intersect(const Shape* s);
...

};

It doesn't make sense to see if a Rectangle or a Circle intersects a Shape. So we
immediately see the need to provide more specialized methods:

class Shape {
...
virtual bool intersect(const Shape *s) = 0;
virtual bool intersect(const Circle *c) = 0;
virtual bool intersect(const Rectangle *r) = 0;
...

};

class Rectangle : public Shape {
...
virtual bool intersect(const Shape *s); // illustrated below
virtual bool intersect(const Circle *c); // Checks circle/rectangle
virtual bool intersect(const Rectangle *r); // Checks rectangle/rectangle
...

};

class Circle : public Shape {
...
virtual bool intersect(const Shape *s); // wrapper implementation below
virtual bool intersect(const Circle *c); // Checks circle/circle
virtual bool intersect(const Rectangle *r); // Checks rectangle/circle
...

8

};

Note that we have to declare many methods that should never be called in order to
prevent the hiding of methods through overloading. If we allocate a Circle and a
Rectangle whose static types are Shape *, we’re in for a few surprises:

Shape* circle = new Circle(...); // upcast to Shape
Shape* rectangle = new Rectangle(...); // upcast to Shape
circle->intersect(rectangle); // Calls Circle::intersect(Shape*)
rectangle->intersect(circle); // Calls Rectangle::intersect(Shape*)

We’re getting one level of reification through the use of virtual functions, but we need
two levels of reification. Short of using type fields or another similar mechanism, we
need to make two virtual function calls in order to get two levels of reification. This is
called double dispatch, and is a nice way to simulate multi-methods in C++.

We must change the methods which get called via the first virtual function call to make
another virtual function call (they used to do nothing). For example we would need to
write this:

bool Circle::intersect(Shape *shape)
{

return shape->intersect(this); // “this” is a Circle *, not a Shape *
}

We would have to make a similar change to the Rectangle::intersect(Shape *)
method.

Let’s trace a call to intersect when we call it with a Circle and a Rectangle. We
allocate our two shapes, both of which are bound to variables with a static type of
Shape *.

Shape* circle = new Circle(...); // upcast to Shape *
Shape* rectangle = new Rectangle(...); // upcast to Shape *

We call the intersect method, which is reified to Circle::intersect(Shape *)

circle->intersect(rectangle); // calls Circle::intersect(Shape *)

The Circle::intersect(Shape *shape) method then executes:

return shape->intersect(this);

The dynamic type of shape is Rectangle *, and the static type of “this” is Circle*.
We then call Rectangle::intersect(Circle *) and have thus done two levels of
reification. Using double dispatch is reasonably efficient, but it requires you to write a
lot of methods.

