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Introduction to C++ Inheritance 
 

This handout is a near-verbatim copy of Chapter 14 from this year’s CS106B/X course 
reader.  Those who’ve taken CS106X recently were taught this material, but CS106B 
skipped over it, and because the chapter is new to the reader as of autumn 2006, those 
who took CS106 prior were denied inheritance coverage as well.  Eric Roberts wrote the 
first version of the chapter, and Julie Zelenski updated everything last summer to use 
C++ inheritance.  My edits are minimal—all I’ve done is updated the examples to make 
use of STL containers as opposed to CS106-specific ones. 
 
CS106B/X spend a good amount of time on binary search trees, because they serve to 
explain how trees work.  Trees occur in many other programming contexts as well.  In 
particular, trees often show up in the implementation of compilers, because they are 
ideal for representing the hierarchical structure of a program.  By exploring this topic in 
some detail, you will learn quite a bit, not only about trees, but also about the 
compilation process itself.  Understanding how compilers work removes some of the 
mystery surrounding programming and makes it easier to understand the programming 
process as a whole. 
 
Unfortunately, designing a complete compiler is far too complex to serve as a useful 
illustration.  Typical commercial compilers require many person-years of programming, 
much of which is beyond the scope of this text.  Even so, it is possible to give you a sense 
of how they work—and, in particular, of how trees fit into the process—by making the 
following simplifications: 
 

• Having you build an interpreter instead of a compiler.  A compiler translates a 
program into machine-language instructions that the computer can then execute 
directly.  Although it has much in common with a compiler, an interpreter never 
actually translates the source code into machine language but simply performs the 
operations necessary to achieve the effect of the compiled program.  Interpreters 
are generally easier to write, but have the disadvantage that interpreted programs 
tend to run much more slowly than their compiled counterparts. 

• Focusing only on the problem of evaluating arithmetic expressions.  A full-scale 
language translator for a modern programming language—whether a compiler or 
an interpreter—must be able to process control statements, function calls, type 
definitions, and many other language constructs.  Most of the fundamental 
techniques used in language translation, however, are illustrated in the seemingly 
simple task of translating arithmetic expressions.  For the purposes of this 
handout, arithmetic expressions will be limited to constants and variables 
combined using the operators +, –, *, /, and = (assignment).  As in C++, 
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parentheses may be used to define the order of operations, which is otherwise 
determined by applying precedence rules. 

• Limiting the types used in expressions to integers.  Modern programming languages 
like C++ allow expressions to manipulate data of many different types.  In our 
version, all data values are assumed to be of type int, which simplifies the 
structure of the interpreter considerably. 

 
Overview of the interpreter 
The primary goal of this larger example is to show you how to design a program that 
accepts arithmetic expressions from the user and then displays the results of evaluating 
those expressions.  The basic operation of the interpreter is therefore to execute the 
following steps repeatedly as part of a loop in the main program: 
 

1. Read in an expression from the user and translate it into an appropriate 
internal form. 

2. Evaluate the expression to produce an integer result. 
3. Print the result of the evaluation on the console. 

 
This iterated process is characteristic of interpreters and is called a read-eval-print loop. 
 
At this level of abstraction, the code for the read-eval-print interpreter is extremely 
simple.  Although the final version of the program will include a little more code than is 
shown here, the following main program captures the essence of the interpreter: 

 
int main(int argc, char *argv[]) 
{ 
 while (true) { 
    Expression *exp = ReadExp(); 
    int value = exp->eval(); 
     cout << value << endl; 
  } 
     

 return 0; 
} 

 
As you can see, the idealized structure of the main program is simply a loop that calls 
functions to accomplish each phase of the read-eval-print loop.  In this formulation, the 
task of reading an expression is indicated by a call to the function ReadExp, which will be 
replaced in subsequent versions of the interpreter program with a somewhat longer 
sequence of statements.  Conceptually, ReadExp is responsible for reading an expression 
from the user and converting it into its internal representation, which takes the form of 
an Expression object.  The task of evaluating the expression falls to the eval member 
function, which returns the integer you get if you apply all the operators in the 
expression in the appropriate order.  The print phase of the read-eval-print loop is 
accomplished by a simple stream insertion to displays the result. 
 
The operation of the ReadExp function consists of the three following steps: 
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1. Input.  The input phase consists of reading in a line of text from the user, which 

can be accomplished with a simple call to getline. 
2. Lexical analysis.  The lexical analysis phase consists of dividing user input into 

individual units called tokens, each of which represents a single logical entity, such 
as an integer constant, an operator, or a variable name.  Fortunately, all the 
facilities required to implement lexical analysis are provided by an object-oriented 
version of streamtokenizer type you’ve seen in CS107.  (The details of the 
streamtokenizer are being downplayed here, since the mechanics of tokenizing 
aren’t all that interesting and isn’t our focus.) 

3. Parsing.  Once the line has been broken down into its component tokens, the 
parsing phase consists of determining whether the individual tokens represent a 
legal expression and, if so, what the structure of that expression is.  To do so, the 
parser must determine how to construct a valid parse tree from the individual 
tokens in the input. 

 
It would be easy enough to implement ReadExp as a single function that combined these 
steps.  In many applications, however, having a ReadExp function is not really what you 
want.  Keeping the individual phases of ReadExp separate gives you more flexibility in 
designing the interpreter structure.  The complete implementation of the main module 
for the interpreter therefore includes explicit code for each of the three phases, as shown 
in here: 
 

/** 
 * File: interp.cc 
 * --------------- 
 * This program simulates the top level of a programming 
 * language interpreter.  The program reads an expression, 
 * evaluates the expression, and displays the result. 
 */ 
 
static const string kNewLineCharacters("\n\r"); 
int main(int argc, char *argv[]) 
{ 
  map<string, int> varTable; 
 streamtokenizer st(cin, kNewLineCharacters, true); 
 
  while (true) { 
   cout << "=> "; 
    Expression *exp = ParseExp(st); 
  if (exp == NULL) break; 
    cout << exp->toString() << " evaluates to "  
       << exp->eval(varTable) << endl; 
  } 

 
 return 0; 

} 
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A sample run of the interpreter might look like this: 
 
 => x = 6↵ 
 (x = 6) evaluates to 6 
 => y = 10↵ 
 (y = 10) evaluates to 10 
 => 2 * x + 3 * y↵ 
 ((2 * x) + (3 * y)) evaluates to 42 
 => 2 * (x + 3) * y↵ 
 ((2 * (x + 3)) * y) evaluates 180 
 => quit↵ 
 

 
As the sample run illustrates, the interpreter allows assignment to variables and adheres 
to C++’s precedence conventions by evaluating multiplication before addition. 
 
Although the code for the main program is straightforward, you still have some 
unfinished business.  First, you need to think about exactly what expressions are and 
how to represent them as objects and how to implement their member functions.  Then, 
you have to implement the ParseExp function.  Because each of these problems involves 
some subtlety, completing the interpreter will take up the remainder of the handout. 
 
Understanding the abstract structure of expressions 
Your first task in completing the interpreter is to understand the concept of an 
expression and how that concept can be represented as an object.  As is often the case 
when you are thinking about a programming abstraction, it makes sense to begin with 
the insights you have acquired about expressions from your experience as a C++ 
programmer.  For example, you know that the lines 
 

0 

2 * 11 

3 * (a + b + c) 

x = x + 1 
 
represent legal expressions in C++.  At the same time, you also know that the lines 
 

2 * (x - y 

17 k 
 
are not expressions; the first has unbalanced parentheses, and the second is missing an 
operator.  An important part of understanding expressions is articulating what 
constitutes an expression so that you can differentiate legal expressions from malformed 
ones. 
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A recursive definition of expressions 
As it happens, the best way to define the structure of a legal expression is to adopt a 
recursive perspective.  A sequence of symbols is an expression if it has one of the 
following forms: 
 

1. An integer constant 
2. A variable name 
3. An expression enclosed in parentheses 
4. A sequence of two expressions separated by an operator 

 
The first two possibilities represent the simple cases for the recursive definition.  The 
remaining possibilities, however, define an expression in terms of simpler ones. 
 
To see how you might apply this recursive definition, consider the following sequence of 
symbols: 
 

y = 3 * (x + 1) 
 
Does this sequence constitute an expression?  You know from experience that the answer 
is yes, but you can use the recursive definition of an expression to justify that answer.  
The integer constants 3 and 1 are expressions according to rule #1.  Similarly, the 
variable names x and y are expressions as specified by rule #2.  Thus, you already know 
that the expressions marked by the symbol exp in the following diagram are expressions, 
as defined by the simple-case rules: 
 

y  =  3  *  (  x  +  1  )

exp exp exp exp

 
 
At this point, you can start to apply the recursive rules.  Given that x and 1 are both 
expressions, you can tell that the string of symbols x + 1 is an expression by applying 
rule #4, because it consists of two expressions separated by an operator.  You can record 
this observation in the diagram by adding a new expression marker tied to the parts of 
the expression that match the rule, as shown: 
 

y  =  3  *  (  x  +  1  )

exp exp exp exp

exp

 
 

The parenthesized quantity can now be identified as an expression according to rule #3, 
which results in the following diagram: 
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y  =  3  *  (  x  +  1  )

exp exp exp exp

exp

exp

 
 

By applying rule #4 two more times to take care of the remaining operators, you can 
show that the entire set of characters is indeed an expression, as follows: 
 

y  =  3  *  (  x  +  1  )

exp exp exp exp

exp

exp

exp

exp

 
 

As you can see, this diagram forms a tree.  A tree that demonstrates how a sequence of 
input symbols fits the syntactic rules of a programming language is called a parse tree. 
 
Ambiguity 
Generating a parse tree from a sequence of symbols requires a certain amount of caution.  
Given the four rules for expressions outlined in the preceding section, you can form 
more than one parse tree for the expression 
 

y = 3 * (x + 1) 
 
Although the tree structure shown at the end of the last section presumably represents 
what the programmer intended, it is just as valid to argue that y = 3 is an expression 
according to rule #4, and that the entire expression therefore consists of the expression 
y = 3, followed by a multiplication sign, followed by the expression (x + 1).  This 
argument ultimately reaches the same conclusion about whether the input line 
represents an expression, but generates a different parse tree.  Both parse trees are shown 
in a diagram on the next page.  The parse tree on the left is the one generated in the last 
section and corresponds to what a C++ programmer means by that expression.  The 
parse tree on the right represents a legal application of the expression rules but reflects 
an incorrect ordering of the operations, given C++’s rules of precedence. 
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The problem with the second parse tree is that it ignores the mathematical rule 
specifying that multiplication is performed before assignment.  The recursive definition 
of an expression indicates only that a sequence of two expressions separated by an 
operator is an expression; it says nothing about the relative precedence of the different 
operators and therefore admits both the intended and unintended interpretations.  
Because it allows multiple interpretations of the same string, the informal definition of 
expression given in the preceding section is said to be ambiguous.  To resolve the 
ambiguity, the parsing algorithm must include some mechanism for determining the 
order in which operators are applied. 
 
The question of how to resolve the ambiguity in an expression during the parsing phase 
is discussed in the section on "Parsing an expression" later in this handout.  At the 
moment, the point of introducing parse trees is to provide some insight into how you 
might represent an expression as a data structure.  To this end, it is extremely important 
to make the following observation about the parse trees in the diagram below: the trees 
themselves are not ambiguous.  The structure of each parse tree explicitly represents the 
structure of the expression.  The ambiguity exists only in deciding how to generate the 
parse tree from the original string of constants, variables, and operators.  Once you have 
the correct parse tree, its structure contains everything you need to understand the order 
in which the operators need to be applied. 
 
Expression trees 
In fact, parse trees contain more information than you need in the evaluation phase.  
Parentheses are useful in determining how to generate the parse tree but play no role in 
the evaluation of an expression once its structure is known.  If your concern is simply to 
find the value of an expression, you do not need to include parentheses within the 
structure.  This observation allows you to simplify a complete parse tree into an abstract 

Intended parse tree and a legal but incorrect alternative 

 

 
y  =  3  *  (  x  +  1  )

exp exp exp exp

exp

exp

exp

exp

 
y  =  3  *  (  x  +  1  )

exp exp exp exp

exp

exp

exp

exp
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structure called an expression tree that is more appropriate to the evaluation phase.  In 
the expression tree, nodes in the parse tree that represent parenthesized sub-expressions 
are eliminated.  Moreover, it is convenient to drop the exp labels from the tree and 
instead mark each node in the tree with the appropriate operator symbol.  For example, 
the intended interpretation of the expression 
 

y = 3 * (x + 1) 
 
corresponds to the following expression tree: 
 

=

y *

+

1

3

x
 

 
The structure of an expression tree is similar in many ways to the binary search tree, but 
there are also some important differences.  In the binary search tree, every node had the 
same structure.  In an expression tree, there are three different types of nodes, as follows: 
 

1. Integer expressions represent integer constants, such as 3 and 1 in the example tree. 
2. Identifier expressions represent the names of variables and are presumably 

represented internally by a string. 
3. ǒmpound expressions  represent the application of an operator to two operands, 

each of which is an arbitrary expression tree. 
 
Each of these types corresponds to one of the rules in the recursive formulation of an 
expression.  The Expression class must make it possible for clients to work with 
expressions of all three types.  Similarly, the underlying implementation must somehow 
make it possible for different node structures to coexist within the tree. To represent such 
a structure, you need to define a representation for expressions that allows them to have 
different structures depending on their type.  An integer expression, for example, must 
include the value of the integer as part of its internal structure.  An identifier expression 
must include the name of the identifier.  A compound node must include the operator 
along with the left and right sub-expressions.  Defining a single abstract type that allows 
expression to take on these different underlying structures requires you to learn a new 
aspect of C++’s type system, which is introduced in the next section. 
 
Class hierarchies and inheritance 
Object-oriented languages like C++ allow you define hierarchical relationships among 
classes.  Whenever you have a class that provides some of the functionality you need for 
a particular application, you can define new classes that are derived from the original 
class, but which specialize its behavior in some way.  The derived classes are known as 
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subclasses of the original class, which in turn becomes the superclass for each of its 
subclasses. 
 
As an example, suppose that you have been charged with designing an object-oriented 
payroll system for a company.  You might begin by defining a general class called 
Employee, which encapsulates the information about an individual worker along with 
methods that implement operations required for the payroll system.  These operations 
could include simple member functions like getName, which returns the name of an 
employee, along with more complicated member functions like computePay, which 
calculates the pay for an employee based on data stored within each Employee object.  In 
many companies, however, employees fall into several different classes that are similar 
in certain respects but different in others.  For example, a company might have hourly 
employees, commissioned employees, and salaried employees on the same payroll.  In 
such companies, it might make sense to define subclasses for each employee category as 
illustrated by the following diagram: 

 
 

Each of the classes HourlyEmployee, CommissionedEmployee, and SalariedEmployee is a 
subclass of the more general Employee class, which acts as their common superclass. 
 
By default, each subclass inherits the behavior its superclass, which means that the 
member functions and internal data structure of the superclass are also available to its 
subclasses.  In cases in which the behavior of a subclass needs to differ from its 
superclass, the designer of the subclass can define entirely new member functions for 
that subclass or override existing member functions with modified ones.  In the payroll 
example, all three subclasses will presumably inherit the getName member function from 
the Employee superclass.  All employees, after all, have a name.  On the other hand, it 
probably makes sense to write separate computePay member functions for each subclass, 
because the computation is likely to be different in each case. 
 
The relationship between the subclasses and the superclass goes beyond just the 
convenience of allowing the common implementation to be shared between the classes. 
The subclass has an is-a relationship with the superclass; that is, a SalariedEmployee is 
an Employee. This means that in any context where an Employee object is used, a 
SalariedEmployee can be substituted instead. Anything that a client can do with an 

CommissionedEmployeeHourlyEmployee SalariedEmployee

Employee
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Employee object (i.e. using the features available in the public interface) can be 
equivalently done to a SalariedEmployee object. This powerful subtyping relationship 
makes it possible for client code to be written in terms of the generic Employee object type 
and any specialization required for a specific kind of employee is handled by the 
subclass implementation. 
 
Defining an inheritance hierarchy for expressions 
As noted earlier, there are three different types of expression nodes that can make up an 
expression tree.  An integer expression requires different storage and is evaluated 
differently than an identifier or compound expression.  Yet all three of these types of 
expressions need to be able to co-exist within an expression tree and need to behave 
similarly from an abstract perspective. 
 
An inheritance hierarchy is an appropriate way to represent the different types of 
expression trees.  At the top of the hierarchy will be the Expression class that specifies 
the features that will be common to all types of expressions. The Expression class has 
three subclasses, one for each specific type of expression. 
 

 
 
Now you should consider what features must be exported by in the public interface of 
the Expression class. The code being used by the interpreter in expects that an 
expression is capable of producing a string representation of itself using toString and 
returning an integer result from the eval member function. The prototype for toString is 
simple enough, but eval requires a bit more careful study.  An expression is evaluated in 
a particular context, which establishes the values for variables used within an expression.  
A compound assignment expression allows assigning a value to a variable and an 
identifier expression needs to be able to look up a variable and return its value.  To do so, 
you need to have some mechanism through which you can associate a variable name 
with a value, just as a compiler would do. A compiler maintains a symbol table where an 
identifier name is mapped to its associated information.  The map container from the STL 
provides just the right tool for implementing such a symbol table.  This table is passed by 
reference to the eval member functions, so that values for variables referred to in the 
expression can be accessed or updated in the table as needed. 
 

IdentifierExpIntegerExp CompoundExp

Expression
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Another important issue for the Expression class interface is that the member functions 
of the superclass need to be declared using the C++ keyword virtual. The virtual 
keyword is applied to a member function to inform the compiler that this member 
function can be overridden by a subclass.  The virtual keyword ensures that the 
member function is invoked using the dynamic run-time type of the object instead of 
relying on the static compile-time type.  For example, consider this code fragment 

 
Expression *exp; 
// exp initialized to point to new object of an Expression subclass 
cout << exp->eval(table); 

 
In the above code, exp has a compile-time type of Expression* whereas the dynamic 
type might be IntegerExp* or CompoundExp*.  When invoking the eval member function, 
the compile-time type dictates that it should use the version of eval that is implemented 
in the Expression class.  However, you want the overridden version of eval that is 
defined in the specific subclass to be used.  By tagging the eval member function with 
the virtual keyword, you are indicating that the member function should be chosen 
based on the dynamic type of the object.  This dynamic dispatch is typically desired for 
any class that is intended to be subclasses so you will typically mark every member 
function within such a class with the virtual keyword. 
 
All classes that are subtypes of Expression—integers, identifiers, and compound 
expressions—are able to evaluate themselves and the superclass Expression declares the 
common prototype for the eval method.  At the same time, it isn’t possible to evaluate an 
expression unless you know what type of expression it is.  You can evaluate an integer or 
an identifier easily enough, but you can’t evaluate a generic expression without more 
information.  Therefore the member function eval in the Expression class is marked as 
pure virtual, which means that there is no default implementation provided by the 
superclass, the implementation must be supplied by the subclass in an overridden 
version of the member function. 
 
If you think about this problem, you’ll soon realize that the Expression class is somewhat 
different from the other classes in this hierarchy.  You can’t have an Expression object 
that is not also a member of one of its subclasses.  It never makes sense to construct an 
Expression object in its own right.  Whenever you want to create an expression, you 
simply construct an object of the appropriate subclass.  Classes, like Expression, that are 
never constructed are called abstract classes.  In C++, you indicate that a class is abstract 
by including at least one pure virtual member function in the class interface. 
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Defining the interface for the Expression subclasses 
In C++, the inheritance relationship for a class is declared in the class header like this 
 

class IntegerExp : public Expression  { 
 

The above class header declares the new class IntegerExp to be a public subclass of the 
Expression class.  Being a public subclass means that all of the public features of the 
Expression class are inherited and public in the IntegerExp class.  This establishes the 
subtyping relationship that an IntegerExp is an Expression and perhaps more, which 
means an IntegerExp object can be substituted wherever an Expression object is 
expected. 
 
Each concrete Expression subclass must provide the implementation for the two pure 
virtual member functions declared in the superclass: toString and eval. Each 
expression subclass, whether it be an integer constant, an identifier, or a compound 
expression, will have its own specific way of implementing these member functions, but 
must provide that functionality using the exact prototype specified by the superclass. 
 
Each subclass also declares its own constructor that depends on the expression type.  To 
construct an integer expression, for example, you need to know the value of the integer 
constant.  To construct a compound expression, you need to specify the operator along 
with the left and right sub-expressions. 
 
The code below shows the interface for the Expression abstract superclass and its three 
subclasses.  All Expression objects are immutable, in the sense that an Expression object, 
once created, will never change.  Although clients are free to embed existing expressions 
in larger ones, the interface offers no facilities for changing the components of any 
existing expression.  Using an immutable type to represent expressions helps enforce the 
separation between the implementation of the Expression class and its clients.  Because 
those clients are prohibited from making changes in the underlying representation, they 
are unable to change the internal structure in a way that violates the requirements for 
expression trees. 
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/** 
 * Class: Expression 
 * ----------------- 
 * This class is used to represent the abstract notion of an 
 * expression, such as one you might encounter in a C++ program. 
 * The abstract Expression class has three concrete subclasses: 
 * 
 *  1. IntegerExp: an integer constant 
 *  2. IdentifierExp: string representing an identifier 
 *  3. CompoundExp: two expressions combined by an operator 
 *  
 * The Expression class defines the interface common to all Expression 
 * objects and each subclass provides its own specific implementation 
 * of the common interface. 
 */ 
  
class Expression 
{ 
  public: 
   
 /** 
  * Constructor: Expression 
  * ----------------------- 
  * The base class constructor is merely a no-op.  The subclasses  
  * should provide their own constructors. 
   */ 
   
   Expression(); 
   
   /** 
  * Destructor: ~Expression 
  * Usage: delete exp; 
  * ------------------ 
  * The destructor deallocates the storage for this expression. 
  * It must be declared virtual to ensure that the correct subclass  
  * destructor is called when deleting an expression. 
    */ 
 
 virtual ~Expression(); 
   
   /** 
  * Member function: eval 
  * Usage: result = exp->eval(table); 
  * --------------------------------- 
  * This member function evaluates this expression and returns its 
  * value.  It is declared virtual to ensure the appropriate subclass  
  * version is used when evaluating an expression. The "= 0" after the 
  * prototype indicates that this member function is "pure virtual" 
    * and the code for the function must be supplied by the subclass. 
    */ 
 virtual int eval(map<string, int>& varTable) = 0; 
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/** 
  * Member function: toString 
  * Usage: str = exp->toString(); 
  * ----------------------------- 
  * This member function returns a string representation of this 
  * expression. The "= 0" after the prototype indicates that this 
  * member function is "pure virtual" and the code for the function 
    * must be supplied by the subclass. 
    */ 
  
 virtual string toString() = 0; 
 
  private: 
 // for simplicity, disallow deep copying of Expressions and subclasses 
   Expression(const Expression& exp); 
 void operator=(const Expression& rhs); 
}; 
 
class IntegerExp: public Expression 
{ 
  public: 
  
   /** 
  * Constructor: IntegerExp 
  * Usage: Expression *exp = new IntegerExp(10); 
  * -------------------------------------------- 
  * The constructor initializes a new integer constant expression 
  * to the given value.  
    */ 
  
   IntegerExp(int val); 
 
   /** 
  * Member function: eval 
  * Usage: result = exp->eval(table); 
  * --------------------------------- 
  * This member function returns the value of the integer constant 
  * represented by this expression. 
    */ 
   
 virtual int eval(map<string, int>& varTable); 
  
   /** 
  * Member function: toString 
  * Usage: str = exp->toString(); 
  * ----------------------------- 
  * This member function returns a string representation of the 
  * the integer constant represented by this expression. 
    */ 
   
 virtual string toString(); 
   
  private: 
 int value; 
}; 
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class IdentifierExp : public Expression 
{ 
  public: 
   
   /** 
  * Constructor: IdentifierExp 
  * Usage: Expression *exp = new IdentifierExp("count"); 
  * ---------------------------------------------------- 
  * The constructor initializes a new identifier expression 
  * for the variable named by name. 
    */ 
   
 IdentifierExp(string name); 
 
   /** 
  * Member function: eval 
  * Usage: result = exp->eval(table); 
  * --------------------------------- 
  * This member function returns the value of the identifier 
  * represented by this expression by looking up the name 
  * in the table and returning its assigned value. An error 
  * is raised if the identifier is not found in the table.  
    */ 
   
 virtual int eval(map<string, int>& varTable); 
  
   /** 
  * Member function: toString 
  * Usage: str = exp->toString(); 
  * ----------------------------- 
  * This member function returns the identifier name represented 
  * by this expression. 
    */ 
 
 virtual string toString(); 
 
  private: 
     string id; 
}; 

 
class CompoundExp: public Expression 
{ 
  public: 
   
   /** 
  * Constructor: CompoundExp 
  * Usage: Expression *exp = new CompoundExp('+', e1, e2); 
  * ------------------------------------------------------ 
  * The constructor initializes a new compound expression 
  * which is composed of the operator (op) and the left and 
  * right subexpression (lhs and rhs).  
    */ 
  
 CompoundExp(char op, Expression *lhs, Expression *rhs); 
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   /** 
  * Destructor: CompoundExp 
  * Usage: delete exp; 
  * ------------------ 
  * The destructor deallocates all storage associated with 
  * this compound expression which includes recursively 
    * deallocating its subexpressions. 
    */ 
   
 virtual ~CompoundExp(); 
 
   /** 
  * Member function: eval 
  * Usage: result = exp->eval(table); 
  * --------------------------------- 
  * This member function returns the value of this expression 
  * by recursively evaluating the left and right subexpressions 
  * and joining the results using op. 
    */ 
   
 virtual int eval(map<string, int>& varTable); 
  
   /** 
  * Member function: toString 
  * Usage: str = exp->toString(); 
  * ----------------------------- 
  * This member function returns a string representation of this 
  * compound expression. 
    */ 
   
   virtual string toString(); 

 
  private: 
 char op; 
 Expression *lhs, *rhs; 
}; 
 

As written, the Expression classes export constructors, string conversion, and evaluation 
functions.  There are, however, other operations on expressions that you might at first 
think belong in this interface.  For example, the main program for the interpreter calls the 
function ParseExp, which are in some sense part of the behavior of the expression type.  
This observation raises the question of whether the Expression interface should export 
those functions as well. 
 
Although ParseExp must be defined somewhere in the code, exporting it through the 
Expression interface may not be the best design strategy.  In a full-scale interpreter, the 
parser requires a significant amount of code—enough to warrant making this phase a 
complete module in its own right.  In the stripped-down version of the interpreter 
presented in this chapter, the code is much smaller.  Even so, it makes sense to partition 
the phases of the interpreter into separate modules for the following reasons: 
 

1. ˇhe resulting modular decomposition resembles more closely the structure you ǒuld tend 
to encounter in practice.  Full-scale interpreters are divided into separate modules; 
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following this convention even in our restricted example clarifies how the pieces 
fit together. 

2. ˇhe program ǐll be easier to maintain as you add features.   Getting the module 
structure right early in the implementation of a large system makes it easier for 
that system to evolve smoothly over time.  If you start with a single module and 
later discover that the program is growing too large, it usually takes more work to 
separate the modules than it would have earlier in the program evolution. 

3. ˇsing separate module for the parser makes it easier to substitute ně implementations.  
One of the principal advantages of using a modular design is that doing so makes 
it easier to substitute one implementation of an interface for another.  For 
example, the section on “Parsing” later in this chapter defines two different 
implementations of the ParseExp function.  If ParseExp is exported by the 
Expression interface, it is more difficult to substitute a new implementation than 
it would be if ParseExp were exported from a separate module. 

 
For these reasons, the Expression interface exports only the types needed to represent 
expressions, along with the constructor and evaluation functions.  The ParseExp function 
is exported by a separate module. 
 
Implementing the Expression classes 
The abstract Expression superclass declares no data members.  This is appropriate, as 
there is no data that is common to all expression types.  Each specific subclass has its 
own unique storage requirements—an integer expression needs to store an integer 
constant, a compound expression stores pointers to its sub-expressions, and so on.  Each 
subclass declares those specific data members that are required for its particular 
expression type.  
 
To reinforce your understanding of how Expression objects are stored, you can visualize 
how the concrete expression structure is represented inside the computer’s memory.  The 
representation of an Expression object depends on its specific subclass. You can diagram 
the structure of an expression tree by considering the three classes independently.  An 
IntegerExp object simply stores an integer value, shown here as it would exist for the 
integer 3: 
 

IntegerExp

3  
An IdentifierExp object stores a string representing a variable name, as illustrated here 
for the variable x: 
 

IdentifierExp

x
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In the case of a CompoundExp object, it stores the binary operator along with two pointers 
which indicate the left and right sub-expressions: 
 

CompoundExp

op

 
 
Because compound nodes contain sub-expressions that can themselves be compound 
nodes, expression trees can grow to an arbitrary level of complexity.  The diagram below 
illustrates the internal data structure for the expression 
 

y = 3 * (x + 1) 
 
which includes three operators and therefore requires three compound nodes.  Although 
the parentheses do not appear explicitly in the expression tree, its structure correctly 
reflects the desired order of operations. 

Representation of the expression y = 3 * (x + 1)  

 

IdentifierExp

x

IntegerExp

1

CompoundExp

=

IdentifierExp

y

CompoundExp

*

CompoundExp

+

IntegerExp

3
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Implementing the member functions 
The member functions in the expression classes are quite easy to implement.  Each 
subclass provides a constructor that takes in appropriate arguments and initializes the 
data members.  The implementation of the toString member function uses the 
information from the data members to return a string representation of the expression. 
 
The only remaining task to implement the evaluation member function.  Each subclass 
has its own strategy for evaluating an expression. 
 
Integer expressions are the easiest.  The value of an expression of an integer expression is 
simply the value of the integer stored in that node.  Thus, the IntegerExp::eval member 
function looks like 
 

int IntegerExp::eval(map<string, int>& varTable) 
{ 

 return value; 
} 

 
Note that even though an IntegerExp does not use the parameter varTable, it is required 
in the prototype for eval member function so that it exactly matches the prototype given 
in the Expression superclass. 
 
The next to consider is that of identifiers.  To evaluate an identifier expression, you look 
up the variable in the variable table and return the associated value as shown here: 
 

int IdentifierExp::eval(map<string, int>& varTable) 
{ 
 map<string, int>::const_iterator found = varTable.find(id); 
   if (found == varTable.end()) { 
  cerr << id << " is undefined." << endl; 
  exit(1); 
 } 
 
   return found->second; 
} 

 
The last case you need to consider is that of compound expressions.  A compound 
expression consists of an operator and two sub-expressions, but you must differentiate 
two subcases: the arithmetic operators (+, –, *, and /) and the assignment operator (=). 
 
For the arithmetic operators, all you have to do is evaluate the left and right sub-
expressions recursively and then apply the appropriate operation.  For assignment, you 
need to evaluate the right-hand side and then store that value into the variable table for 
the identifier on the left-hand side. 
 
The implementation of the full Expression hierarchy is presented here: 
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/** 
 * File: exp.cpp 
 * ------------- 
 * This file implements the Expression class hierarchy.  The public 
 * member functions are standard constructor and eval functions 
 * that require no individual documentation. 
 */ 
 
Expression::Expression() {} 
Expression::~Expression() {} 
 
IntegerExp::IntegerExp(int val)  
{  
 value = val; 
} 
 
string IntegerExp::toString() 
{ 
 ostringstream oss; 
 oss << value; 
 return oss.str(); 
} 
 
int IntegerExp::eval(map<string, int>& varTable)  
{  
 return value; 
} 

 
IdentifierExp::IdentifierExp(string name) : id(name) {} 
 
string IdentifierExp::toString() 
{ 
 return id; 
} 
 
int IdentifierExp::eval(map<string, int>& varTable) 
{ 
 map<string, int>::const_iterator found = varTable.find(id); 
   if (found == varTable.end()) { 
  cerr << id << " is undefined." << endl; 
  exit(1); 
 } 
   return found->second; 
} 
 
CompoundExp::CompoundExp(char op, Expression *l, Expression *r)  
{ 

 op = oper; 
 lhs = l; 
 rhs = r; 
} 
 
CompoundExp::~CompoundExp() 
{ 

 delete lhs; 
 delete rhs; 
} 
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string CompoundExp::toString() 
{  

 return '(' + lhs->toString() + ' ' + op + ' ' 
              + rhs->toString() + ')';  
} 
 
int CompoundExp::eval(Map<int> &varTable) 
{ 
  if (op == '=')  
 { 
    int val = rhs->eval(varTable); 
     varTable[lhs->toString()] = val; 
    return val; 
   } 
 
  int left = lhs->eval(varTable); 
  int right = rhs->eval(varTable); 
   switch (op) { 
    case '+': return left + right; 
    case '-': return left - right; 
      case '*': return left * right; 
      case '/': return left / right; 
  } 
 
 cerr << "Illegal operator: '" << op << "'" << endl; 
 exit(1); 
 return 0; // never gets here, but compiler may not be able to tell 
} 

 
Parsing an expression 
The problem of building the appropriate parse tree from a stream of tokens is not an easy 
one.  To a large extent, the underlying theory necessary to build a efficient parser lies  
beyond the scope of this text.  Even so, it is possible to make some headway on the 
problem and solve it for the limited case of arithmetic expressions. 
 
Parsing and grammars 
In the early days of programming languages, programmers implemented the parsing 
phase of a compiler without thinking very hard about the nature of the process.  As a 
result, early parsing programs were difficult to write and even harder to debug.  In the 
1960s, however, computer scientists studied the problem of parsing from a more 
theoretical perspective, which simplified it greatly.  Today, a computer scientist who has 
taken a course on compilers can write a parser for a programming language with very 
little work.  In fact, most parsers can be generated automatically from a simple 
specification of the language for which they are intended.  In the field of computer 
science, parsing is one of the areas in which it is easiest to see the profound impact of 
theory on practice.  Without the theoretical work necessary to simplify the problem, 
programming languages would have made far less headway than they have. 
 
The essential theoretical insight necessary to simplify parsing is actually borrowed from 
linguistics.  Like human languages, programming languages have rules of syntax that 
define the grammatical structure of the language.  Moreover, because programming 
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languages are much more regular in structure than human languages, it is usually easy 
to describe the syntactic structure of a programming language in a precise form called a 
grammar.  In the context of a programming language, a grammar consists of a set of 
rules that show how a particular language construct can be derived from simpler ones. 
 
If you start with the English rules for expression formation, it is not hard to write down a 
grammar for the simple expressions used in this chapter.  Partly because it simplifies 
things a little in the parser, it helps to incorporate the notion of a term into the parser as 
any single unit that can appear as an operand to a larger expression.  For example, 
constants and variables are clearly terms.  Moreover, an expression in parentheses acts as 
a single unit and can therefore also be regarded as a term.  Thus, a term is one of the 
following possibilities: 
 

o An integer constant 
o A variable 
o An expression in parentheses 

 
An expression is then either of the following: 
 

o A term 
o Two expressions separated by an operator 

 
This informal definition can be translated directly into the following grammar, presented 
in what programmers call BNF, which stands for Backus-Naur form after its inventors 
John Backus and Peter Naur: 
 

E   →   T 
E   →   E  op  E 
 
T   →   integer 
T   →   identifier 
T   →   (  E  ) 

 
In the grammar, uppercase letters like E and T are called nonterminal symbols and 
stand for an abstract linguistic class, such as an expression or a term.  The specific 
punctuation marks and the italicized words represent the terminal symbols, which are 
those that appear in the token stream.  Explicit terminal symbols, such as the parentheses 
in the last rule, must appear in the input exactly as written.  The italicized words 
represent placeholders for tokens that fit their general description.  Thus, the notation 
integer stands for any string of digits returned by the scanner as a token.  Each terminal 
corresponds to exactly one token in the scanner stream.  Nonterminals typically 
correspond to an entire sequence of tokens. 
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Like the informal rules for defining expressions presented in the section on “A recursive 
definition of expressions” earlier in the chapter, grammars can be used to generate parse 
trees.  Just like those rules, this grammar is ambiguous as written and can generate 
several different parse trees for the same sequence of tokens.  Once again, the problem is 
that the grammar does not incorporate any knowledge of the precedence of the operators 
and is therefore not immediately useful in constructing a parser. 
 
Parsing without precedence 
Before considering how it might be possible to add precedence to the grammar, it helps 
to think about circumventing this problem in a simpler way.  What if there were no 
precedence in the language?  Would that make parsing easier?  Throwing away 
precedence is not as crazy an idea as it might seem.  In the 1960s, Ken Iverson designed a 
language called APL (which is an abbreviation for ̌ Programming Languag e), which is 
still in use today.  Instead of using standard mathematical rules of precedence, APL 
operators all have equal precedence and are executed in strictly right-to-left order.  Thus, 
the expression 
 

2 * x + y 
 
is interpreted in APL as if it had been written 
 

2 * (x + y) 
 
which is exactly the opposite of the conventional mathematical interpretation.  To 
recover the conventional meaning, you would have to write 
 

(2 * x) + y 
 
in APL.  This style of precedence is called Iversonian precedence after its inventor. 
 
The problem of parsing turns out to be much easier for languages that use Iversonian 
precedence, mostly because, in them, the grammar for expressions can be written in a 
form that is both unambiguous and simple to parse: 
 

E   →   T 
E   →   T  op  E 
 
T   →   integer 
T   →   identifier 
T   →   (  E  ) 

 
This grammar is almost the same as the ambiguous grammar presented in the preceding 
section.  The only difference is the rule 
 

E   →   T  op  E 
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which specifies that the left-hand operand to any operator must be a simple term. 
 
Writing a parser based on the Iversonian expression grammar requires little more than a 
direct translation of the grammar into code.  For each of the nonterminal symbols, you 
write a function that follows the structure of the grammar.  For example, the task of 
reading an expression is assigned to a function called ReadE, whose structure follows the 
rules for expressions.  To parse either of the two expression forms, the ReadE function 
must first call the function ReadT to read a term and then check to see whether the next 
token is an operator.  If it is, ReadE calls itself recursively to read the expression following 
the operator and creates a compound expression node from the parts.  If the token is not 
an operator, ReadE calls saveToken to put that token back in the input being scanned 
where it will be read at a higher level of the recursive structure.  In much the same way, 
the ReadT function implements the rules in the grammar that define a term.  The code for 
ReadT begins by reading a token and determining whether it represents an integer, an 
identifier, or a parenthesized expression.  If it does, ReadT returns the corresponding 
expression.  If the token does not correspond to any of these possibilities, the expression 
is illegal. 
 
Parsers that are structured as a collection of functions that call themselves recursively in 
a fashion guided by a grammar are called recursive-descent parsers.  A complete 
implementation of a recursive-descent parser for expressions with Iversonian precedence 
appears below.  The real work is done by the mutually recursive functions ReadE and 
ReadT.  The ParseExp function itself simply calls ReadE to read the expression and then 
checks to see that there are no extra tokens on the input line. 
 

/** 
 * Implementation notes: ParseExp 
 * ------------------------------ 
 * This function calls ReadE to read an expression and then 
 * checks to make sure no tokens are left over. 
 */ 
 
Expression *ParseExp(streamtokenizer& st) 
{ 
 if (!st.hasMoreToken()) return NULL;  // end-of-stream reached 
 Expression *exp = ReadE(st); 
  if (st.hasMoreTokens()) { 
    cerr << "Extra tokens encountered while parsing an expression." << endl; 
  cerr << "Exiting gracefully" << endl; 
  return NULL; 
   } 
   
 return (exp); 
} 
   
/** 
 * Implementation notes: ReadE 
 * Usage: exp = ReadE(scanner); 
 * ---------------------------- 
 * This function reads the next expression from the streamtokenizer by 
 * matching the input to one of the following grammatical rules: 
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 * 
 *       E  ->  T 
 *       E  ->  T op E 
 * 
 * Both right-hand sides start with T, so the code can begin by 
 * calling ReadT.  If the next token is an operator, the code 
 * creates a compound expression from the term, the operator, 
 * and the expression after the operator. 
 */ 
 
Expression *ReadE(streamtokenizer& st) 
{ 
 Expression *exp = ReadT(st); 
  string token = st.nextToken(); 
    
 if (IsOperator(token)) { 
  Expression *lhs = exp; // given better name to exp 
    Expression *rhs = ReadE(st); 
      exp =  new CompoundExp(token[0], lhs, rhs); 
  } else { 
     st.saveToken(token); 
  } 
  
   return exp; 
} 
 
/** 
 * Function: ReadT 
 * Usage: exp = ReadT(scanner); 
 * ---------------------------- 
 * This function reads a single term from the streamtokenizer by matching 
 * the input to one of the following grammatical rules: 
 * 
 *       T  ->  integer 
 *       T  ->  identifier 
 *       T  ->  ( E ) 
 * 
 * In each case, the first token identifies the appropriate rule. 
 */ 
 
Expression *ReadT(streamtokenizer& st) 
{ 
 Expression *exp; 
 
   string token = st.nextToken(); 
  if (isdigit(token[0])) { 
  istringstream iss(token); 
  int value; 
  iss >> value; 
    exp = new IntegerExp(value); 
   } else if (isalpha(token[0])) { 
     exp = new IdentifierExp(token); 
   } else if (token == "(") { 
     exp = ReadE(st); 
     if (st.nextToken() != ")") { 
        cerr << "Unbalanced parenthesis encountered." << endl; 
   exit(1); 
     } 
   } else { 
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  cerr << "Illegal term in expression." << endl; 
  exit(1); 
   } 
 
 return exp; 
} 
 
/** 
 * Function: IsOperator 
 * Usage: if (IsOperator(token)) . . . 
 * ----------------------------------- 
 * This function returns true if the token is a legal operator. 
 */ 
 
bool IsOperator(string token) 
{ 
  if (token.length() != 1) return false; 
   switch (token[0]) { 
    case '+': case '-': case '*': case '/': case '=': 
       return true; 
     default: 
       return false; 
   } 
} 
 

 
If all of this seems like magic, you should go through each step in the operation of the 
parser on a simple expression of your own choosing.  As with many recursive functions, 
the code for the parser is simple even though the effect is profound. 
 
 


