
CS107L Handout 05
Autumn 2007 October 26, 2007

Introduction to C++ Inheritance

This handout is a near-verbatim copy of Chapter 14 from this year’s CS106B/X course
reader. Those who’ve taken CS106X recently were taught this material, but CS106B
skipped over it, and because the chapter is new to the reader as of autumn 2006, those
who took CS106 prior were denied inheritance coverage as well. Eric Roberts wrote the
first version of the chapter, and Julie Zelenski updated everything last summer to use
C++ inheritance. My edits are minimal—all I’ve done is updated the examples to make
use of STL containers as opposed to CS106-specific ones.

CS106B/X spend a good amount of time on binary search trees, because they serve to
explain how trees work. Trees occur in many other programming contexts as well. In
particular, trees often show up in the implementation of compilers, because they are
ideal for representing the hierarchical structure of a program. By exploring this topic in
some detail, you will learn quite a bit, not only about trees, but also about the
compilation process itself. Understanding how compilers work removes some of the
mystery surrounding programming and makes it easier to understand the programming
process as a whole.

Unfortunately, designing a complete compiler is far too complex to serve as a useful
illustration. Typical commercial compilers require many person-years of programming,
much of which is beyond the scope of this text. Even so, it is possible to give you a sense
of how they work—and, in particular, of how trees fit into the process—by making the
following simplifications:

• Having you build an interpreter instead of a compiler. A compiler translates a
program into machine-language instructions that the computer can then execute
directly. Although it has much in common with a compiler, an interpreter never
actually translates the source code into machine language but simply performs the
operations necessary to achieve the effect of the compiled program. Interpreters
are generally easier to write, but have the disadvantage that interpreted programs
tend to run much more slowly than their compiled counterparts.

• Focusing only on the problem of evaluating arithmetic expressions. A full-scale
language translator for a modern programming language—whether a compiler or
an interpreter—must be able to process control statements, function calls, type
definitions, and many other language constructs. Most of the fundamental
techniques used in language translation, however, are illustrated in the seemingly
simple task of translating arithmetic expressions. For the purposes of this
handout, arithmetic expressions will be limited to constants and variables
combined using the operators +, –, *, /, and = (assignment). As in C++,

 2

parentheses may be used to define the order of operations, which is otherwise
determined by applying precedence rules.

• Limiting the types used in expressions to integers. Modern programming languages
like C++ allow expressions to manipulate data of many different types. In our
version, all data values are assumed to be of type int, which simplifies the
structure of the interpreter considerably.

Overview of the interpreter
The primary goal of this larger example is to show you how to design a program that
accepts arithmetic expressions from the user and then displays the results of evaluating
those expressions. The basic operation of the interpreter is therefore to execute the
following steps repeatedly as part of a loop in the main program:

1. Read in an expression from the user and translate it into an appropriate
internal form.

2. Evaluate the expression to produce an integer result.
3. Print the result of the evaluation on the console.

This iterated process is characteristic of interpreters and is called a read-eval-print loop.

At this level of abstraction, the code for the read-eval-print interpreter is extremely
simple. Although the final version of the program will include a little more code than is
shown here, the following main program captures the essence of the interpreter:

int main(int argc, char *argv[])
{
 while (true) {
 Expression *exp = ReadExp();
 int value = exp->eval();
 cout << value << endl;
 }

 return 0;
}

As you can see, the idealized structure of the main program is simply a loop that calls
functions to accomplish each phase of the read-eval-print loop. In this formulation, the
task of reading an expression is indicated by a call to the function ReadExp, which will be
replaced in subsequent versions of the interpreter program with a somewhat longer
sequence of statements. Conceptually, ReadExp is responsible for reading an expression
from the user and converting it into its internal representation, which takes the form of
an Expression object. The task of evaluating the expression falls to the eval member
function, which returns the integer you get if you apply all the operators in the
expression in the appropriate order. The print phase of the read-eval-print loop is
accomplished by a simple stream insertion to displays the result.

The operation of the ReadExp function consists of the three following steps:

 3

1. Input. The input phase consists of reading in a line of text from the user, which

can be accomplished with a simple call to getline.
2. Lexical analysis. The lexical analysis phase consists of dividing user input into

individual units called tokens, each of which represents a single logical entity, such
as an integer constant, an operator, or a variable name. Fortunately, all the
facilities required to implement lexical analysis are provided by an object-oriented
version of streamtokenizer type you’ve seen in CS107. (The details of the
streamtokenizer are being downplayed here, since the mechanics of tokenizing
aren’t all that interesting and isn’t our focus.)

3. Parsing. Once the line has been broken down into its component tokens, the
parsing phase consists of determining whether the individual tokens represent a
legal expression and, if so, what the structure of that expression is. To do so, the
parser must determine how to construct a valid parse tree from the individual
tokens in the input.

It would be easy enough to implement ReadExp as a single function that combined these
steps. In many applications, however, having a ReadExp function is not really what you
want. Keeping the individual phases of ReadExp separate gives you more flexibility in
designing the interpreter structure. The complete implementation of the main module
for the interpreter therefore includes explicit code for each of the three phases, as shown
in here:

/**
 * File: interp.cc
 * ---------------
 * This program simulates the top level of a programming
 * language interpreter. The program reads an expression,
 * evaluates the expression, and displays the result.
 */

static const string kNewLineCharacters("\n\r");
int main(int argc, char *argv[])
{
 map<string, int> varTable;
 streamtokenizer st(cin, kNewLineCharacters, true);

 while (true) {
 cout << "=> ";
 Expression *exp = ParseExp(st);
 if (exp == NULL) break;
 cout << exp->toString() << " evaluates to "
 << exp->eval(varTable) << endl;
 }

 return 0;

}

 4

A sample run of the interpreter might look like this:

 => x = 6↵
 (x = 6) evaluates to 6
 => y = 10↵
 (y = 10) evaluates to 10
 => 2 * x + 3 * y↵
 ((2 * x) + (3 * y)) evaluates to 42
 => 2 * (x + 3) * y↵
 ((2 * (x + 3)) * y) evaluates 180
 => quit↵

As the sample run illustrates, the interpreter allows assignment to variables and adheres
to C++’s precedence conventions by evaluating multiplication before addition.

Although the code for the main program is straightforward, you still have some
unfinished business. First, you need to think about exactly what expressions are and
how to represent them as objects and how to implement their member functions. Then,
you have to implement the ParseExp function. Because each of these problems involves
some subtlety, completing the interpreter will take up the remainder of the handout.

Understanding the abstract structure of expressions
Your first task in completing the interpreter is to understand the concept of an
expression and how that concept can be represented as an object. As is often the case
when you are thinking about a programming abstraction, it makes sense to begin with
the insights you have acquired about expressions from your experience as a C++
programmer. For example, you know that the lines

0

2 * 11

3 * (a + b + c)

x = x + 1

represent legal expressions in C++. At the same time, you also know that the lines

2 * (x - y

17 k

are not expressions; the first has unbalanced parentheses, and the second is missing an
operator. An important part of understanding expressions is articulating what
constitutes an expression so that you can differentiate legal expressions from malformed
ones.

 5

A recursive definition of expressions
As it happens, the best way to define the structure of a legal expression is to adopt a
recursive perspective. A sequence of symbols is an expression if it has one of the
following forms:

1. An integer constant
2. A variable name
3. An expression enclosed in parentheses
4. A sequence of two expressions separated by an operator

The first two possibilities represent the simple cases for the recursive definition. The
remaining possibilities, however, define an expression in terms of simpler ones.

To see how you might apply this recursive definition, consider the following sequence of
symbols:

y = 3 * (x + 1)

Does this sequence constitute an expression? You know from experience that the answer
is yes, but you can use the recursive definition of an expression to justify that answer.
The integer constants 3 and 1 are expressions according to rule #1. Similarly, the
variable names x and y are expressions as specified by rule #2. Thus, you already know
that the expressions marked by the symbol exp in the following diagram are expressions,
as defined by the simple-case rules:

y = 3 * (x + 1)

exp exp exp exp

At this point, you can start to apply the recursive rules. Given that x and 1 are both
expressions, you can tell that the string of symbols x + 1 is an expression by applying
rule #4, because it consists of two expressions separated by an operator. You can record
this observation in the diagram by adding a new expression marker tied to the parts of
the expression that match the rule, as shown:

y = 3 * (x + 1)

exp exp exp exp

exp

The parenthesized quantity can now be identified as an expression according to rule #3,
which results in the following diagram:

 6

y = 3 * (x + 1)

exp exp exp exp

exp

exp

By applying rule #4 two more times to take care of the remaining operators, you can
show that the entire set of characters is indeed an expression, as follows:

y = 3 * (x + 1)

exp exp exp exp

exp

exp

exp

exp

As you can see, this diagram forms a tree. A tree that demonstrates how a sequence of
input symbols fits the syntactic rules of a programming language is called a parse tree.

Ambiguity
Generating a parse tree from a sequence of symbols requires a certain amount of caution.
Given the four rules for expressions outlined in the preceding section, you can form
more than one parse tree for the expression

y = 3 * (x + 1)

Although the tree structure shown at the end of the last section presumably represents
what the programmer intended, it is just as valid to argue that y = 3 is an expression
according to rule #4, and that the entire expression therefore consists of the expression
y = 3, followed by a multiplication sign, followed by the expression (x + 1). This
argument ultimately reaches the same conclusion about whether the input line
represents an expression, but generates a different parse tree. Both parse trees are shown
in a diagram on the next page. The parse tree on the left is the one generated in the last
section and corresponds to what a C++ programmer means by that expression. The
parse tree on the right represents a legal application of the expression rules but reflects
an incorrect ordering of the operations, given C++’s rules of precedence.

 7

The problem with the second parse tree is that it ignores the mathematical rule
specifying that multiplication is performed before assignment. The recursive definition
of an expression indicates only that a sequence of two expressions separated by an
operator is an expression; it says nothing about the relative precedence of the different
operators and therefore admits both the intended and unintended interpretations.
Because it allows multiple interpretations of the same string, the informal definition of
expression given in the preceding section is said to be ambiguous. To resolve the
ambiguity, the parsing algorithm must include some mechanism for determining the
order in which operators are applied.

The question of how to resolve the ambiguity in an expression during the parsing phase
is discussed in the section on "Parsing an expression" later in this handout. At the
moment, the point of introducing parse trees is to provide some insight into how you
might represent an expression as a data structure. To this end, it is extremely important
to make the following observation about the parse trees in the diagram below: the trees
themselves are not ambiguous. The structure of each parse tree explicitly represents the
structure of the expression. The ambiguity exists only in deciding how to generate the
parse tree from the original string of constants, variables, and operators. Once you have
the correct parse tree, its structure contains everything you need to understand the order
in which the operators need to be applied.

Expression trees
In fact, parse trees contain more information than you need in the evaluation phase.
Parentheses are useful in determining how to generate the parse tree but play no role in
the evaluation of an expression once its structure is known. If your concern is simply to
find the value of an expression, you do not need to include parentheses within the
structure. This observation allows you to simplify a complete parse tree into an abstract

Intended parse tree and a legal but incorrect alternative

y = 3 * (x + 1)

exp exp exp exp

exp

exp

exp

exp

y = 3 * (x + 1)

exp exp exp exp

exp

exp

exp

exp

 8

structure called an expression tree that is more appropriate to the evaluation phase. In
the expression tree, nodes in the parse tree that represent parenthesized sub-expressions
are eliminated. Moreover, it is convenient to drop the exp labels from the tree and
instead mark each node in the tree with the appropriate operator symbol. For example,
the intended interpretation of the expression

y = 3 * (x + 1)

corresponds to the following expression tree:

=

y *

+

1

3

x

The structure of an expression tree is similar in many ways to the binary search tree, but
there are also some important differences. In the binary search tree, every node had the
same structure. In an expression tree, there are three different types of nodes, as follows:

1. Integer expressions represent integer constants, such as 3 and 1 in the example tree.
2. Identifier expressions represent the names of variables and are presumably

represented internally by a string.
3. ǒmpound expressions represent the application of an operator to two operands,

each of which is an arbitrary expression tree.

Each of these types corresponds to one of the rules in the recursive formulation of an
expression. The Expression class must make it possible for clients to work with
expressions of all three types. Similarly, the underlying implementation must somehow
make it possible for different node structures to coexist within the tree. To represent such
a structure, you need to define a representation for expressions that allows them to have
different structures depending on their type. An integer expression, for example, must
include the value of the integer as part of its internal structure. An identifier expression
must include the name of the identifier. A compound node must include the operator
along with the left and right sub-expressions. Defining a single abstract type that allows
expression to take on these different underlying structures requires you to learn a new
aspect of C++’s type system, which is introduced in the next section.

Class hierarchies and inheritance
Object-oriented languages like C++ allow you define hierarchical relationships among
classes. Whenever you have a class that provides some of the functionality you need for
a particular application, you can define new classes that are derived from the original
class, but which specialize its behavior in some way. The derived classes are known as

 9

subclasses of the original class, which in turn becomes the superclass for each of its
subclasses.

As an example, suppose that you have been charged with designing an object-oriented
payroll system for a company. You might begin by defining a general class called
Employee, which encapsulates the information about an individual worker along with
methods that implement operations required for the payroll system. These operations
could include simple member functions like getName, which returns the name of an
employee, along with more complicated member functions like computePay, which
calculates the pay for an employee based on data stored within each Employee object. In
many companies, however, employees fall into several different classes that are similar
in certain respects but different in others. For example, a company might have hourly
employees, commissioned employees, and salaried employees on the same payroll. In
such companies, it might make sense to define subclasses for each employee category as
illustrated by the following diagram:

Each of the classes HourlyEmployee, CommissionedEmployee, and SalariedEmployee is a
subclass of the more general Employee class, which acts as their common superclass.

By default, each subclass inherits the behavior its superclass, which means that the
member functions and internal data structure of the superclass are also available to its
subclasses. In cases in which the behavior of a subclass needs to differ from its
superclass, the designer of the subclass can define entirely new member functions for
that subclass or override existing member functions with modified ones. In the payroll
example, all three subclasses will presumably inherit the getName member function from
the Employee superclass. All employees, after all, have a name. On the other hand, it
probably makes sense to write separate computePay member functions for each subclass,
because the computation is likely to be different in each case.

The relationship between the subclasses and the superclass goes beyond just the
convenience of allowing the common implementation to be shared between the classes.
The subclass has an is-a relationship with the superclass; that is, a SalariedEmployee is
an Employee. This means that in any context where an Employee object is used, a
SalariedEmployee can be substituted instead. Anything that a client can do with an

CommissionedEmployeeHourlyEmployee SalariedEmployee

Employee

 10

Employee object (i.e. using the features available in the public interface) can be
equivalently done to a SalariedEmployee object. This powerful subtyping relationship
makes it possible for client code to be written in terms of the generic Employee object type
and any specialization required for a specific kind of employee is handled by the
subclass implementation.

Defining an inheritance hierarchy for expressions
As noted earlier, there are three different types of expression nodes that can make up an
expression tree. An integer expression requires different storage and is evaluated
differently than an identifier or compound expression. Yet all three of these types of
expressions need to be able to co-exist within an expression tree and need to behave
similarly from an abstract perspective.

An inheritance hierarchy is an appropriate way to represent the different types of
expression trees. At the top of the hierarchy will be the Expression class that specifies
the features that will be common to all types of expressions. The Expression class has
three subclasses, one for each specific type of expression.

Now you should consider what features must be exported by in the public interface of
the Expression class. The code being used by the interpreter in expects that an
expression is capable of producing a string representation of itself using toString and
returning an integer result from the eval member function. The prototype for toString is
simple enough, but eval requires a bit more careful study. An expression is evaluated in
a particular context, which establishes the values for variables used within an expression.
A compound assignment expression allows assigning a value to a variable and an
identifier expression needs to be able to look up a variable and return its value. To do so,
you need to have some mechanism through which you can associate a variable name
with a value, just as a compiler would do. A compiler maintains a symbol table where an
identifier name is mapped to its associated information. The map container from the STL
provides just the right tool for implementing such a symbol table. This table is passed by
reference to the eval member functions, so that values for variables referred to in the
expression can be accessed or updated in the table as needed.

IdentifierExpIntegerExp CompoundExp

Expression

 11

Another important issue for the Expression class interface is that the member functions
of the superclass need to be declared using the C++ keyword virtual. The virtual
keyword is applied to a member function to inform the compiler that this member
function can be overridden by a subclass. The virtual keyword ensures that the
member function is invoked using the dynamic run-time type of the object instead of
relying on the static compile-time type. For example, consider this code fragment

Expression *exp;
// exp initialized to point to new object of an Expression subclass
cout << exp->eval(table);

In the above code, exp has a compile-time type of Expression* whereas the dynamic
type might be IntegerExp* or CompoundExp*. When invoking the eval member function,
the compile-time type dictates that it should use the version of eval that is implemented
in the Expression class. However, you want the overridden version of eval that is
defined in the specific subclass to be used. By tagging the eval member function with
the virtual keyword, you are indicating that the member function should be chosen
based on the dynamic type of the object. This dynamic dispatch is typically desired for
any class that is intended to be subclasses so you will typically mark every member
function within such a class with the virtual keyword.

All classes that are subtypes of Expression—integers, identifiers, and compound
expressions—are able to evaluate themselves and the superclass Expression declares the
common prototype for the eval method. At the same time, it isn’t possible to evaluate an
expression unless you know what type of expression it is. You can evaluate an integer or
an identifier easily enough, but you can’t evaluate a generic expression without more
information. Therefore the member function eval in the Expression class is marked as
pure virtual, which means that there is no default implementation provided by the
superclass, the implementation must be supplied by the subclass in an overridden
version of the member function.

If you think about this problem, you’ll soon realize that the Expression class is somewhat
different from the other classes in this hierarchy. You can’t have an Expression object
that is not also a member of one of its subclasses. It never makes sense to construct an
Expression object in its own right. Whenever you want to create an expression, you
simply construct an object of the appropriate subclass. Classes, like Expression, that are
never constructed are called abstract classes. In C++, you indicate that a class is abstract
by including at least one pure virtual member function in the class interface.

 12

Defining the interface for the Expression subclasses
In C++, the inheritance relationship for a class is declared in the class header like this

class IntegerExp : public Expression {

The above class header declares the new class IntegerExp to be a public subclass of the
Expression class. Being a public subclass means that all of the public features of the
Expression class are inherited and public in the IntegerExp class. This establishes the
subtyping relationship that an IntegerExp is an Expression and perhaps more, which
means an IntegerExp object can be substituted wherever an Expression object is
expected.

Each concrete Expression subclass must provide the implementation for the two pure
virtual member functions declared in the superclass: toString and eval. Each
expression subclass, whether it be an integer constant, an identifier, or a compound
expression, will have its own specific way of implementing these member functions, but
must provide that functionality using the exact prototype specified by the superclass.

Each subclass also declares its own constructor that depends on the expression type. To
construct an integer expression, for example, you need to know the value of the integer
constant. To construct a compound expression, you need to specify the operator along
with the left and right sub-expressions.

The code below shows the interface for the Expression abstract superclass and its three
subclasses. All Expression objects are immutable, in the sense that an Expression object,
once created, will never change. Although clients are free to embed existing expressions
in larger ones, the interface offers no facilities for changing the components of any
existing expression. Using an immutable type to represent expressions helps enforce the
separation between the implementation of the Expression class and its clients. Because
those clients are prohibited from making changes in the underlying representation, they
are unable to change the internal structure in a way that violates the requirements for
expression trees.

 13

/**
 * Class: Expression
 * -----------------
 * This class is used to represent the abstract notion of an
 * expression, such as one you might encounter in a C++ program.
 * The abstract Expression class has three concrete subclasses:
 *
 * 1. IntegerExp: an integer constant
 * 2. IdentifierExp: string representing an identifier
 * 3. CompoundExp: two expressions combined by an operator
 *
 * The Expression class defines the interface common to all Expression
 * objects and each subclass provides its own specific implementation
 * of the common interface.
 */

class Expression
{
 public:

 /**
 * Constructor: Expression
 * -----------------------
 * The base class constructor is merely a no-op. The subclasses
 * should provide their own constructors.
 */

 Expression();

 /**
 * Destructor: ~Expression
 * Usage: delete exp;
 * ------------------
 * The destructor deallocates the storage for this expression.
 * It must be declared virtual to ensure that the correct subclass
 * destructor is called when deleting an expression.
 */

 virtual ~Expression();

 /**
 * Member function: eval
 * Usage: result = exp->eval(table);
 * ---------------------------------
 * This member function evaluates this expression and returns its
 * value. It is declared virtual to ensure the appropriate subclass
 * version is used when evaluating an expression. The "= 0" after the
 * prototype indicates that this member function is "pure virtual"
 * and the code for the function must be supplied by the subclass.
 */
 virtual int eval(map<string, int>& varTable) = 0;

 14

/**
 * Member function: toString
 * Usage: str = exp->toString();
 * -----------------------------
 * This member function returns a string representation of this
 * expression. The "= 0" after the prototype indicates that this
 * member function is "pure virtual" and the code for the function
 * must be supplied by the subclass.
 */

 virtual string toString() = 0;

 private:
 // for simplicity, disallow deep copying of Expressions and subclasses
 Expression(const Expression& exp);
 void operator=(const Expression& rhs);
};

class IntegerExp: public Expression
{
 public:

 /**
 * Constructor: IntegerExp
 * Usage: Expression *exp = new IntegerExp(10);
 * --
 * The constructor initializes a new integer constant expression
 * to the given value.
 */

 IntegerExp(int val);

 /**
 * Member function: eval
 * Usage: result = exp->eval(table);
 * ---------------------------------
 * This member function returns the value of the integer constant
 * represented by this expression.
 */

 virtual int eval(map<string, int>& varTable);

 /**
 * Member function: toString
 * Usage: str = exp->toString();
 * -----------------------------
 * This member function returns a string representation of the
 * the integer constant represented by this expression.
 */

 virtual string toString();

 private:
 int value;
};

 15

class IdentifierExp : public Expression
{
 public:

 /**
 * Constructor: IdentifierExp
 * Usage: Expression *exp = new IdentifierExp("count");
 * --
 * The constructor initializes a new identifier expression
 * for the variable named by name.
 */

 IdentifierExp(string name);

 /**
 * Member function: eval
 * Usage: result = exp->eval(table);
 * ---------------------------------
 * This member function returns the value of the identifier
 * represented by this expression by looking up the name
 * in the table and returning its assigned value. An error
 * is raised if the identifier is not found in the table.
 */

 virtual int eval(map<string, int>& varTable);

 /**
 * Member function: toString
 * Usage: str = exp->toString();
 * -----------------------------
 * This member function returns the identifier name represented
 * by this expression.
 */

 virtual string toString();

 private:
 string id;
};

class CompoundExp: public Expression
{
 public:

 /**
 * Constructor: CompoundExp
 * Usage: Expression *exp = new CompoundExp('+', e1, e2);
 * --
 * The constructor initializes a new compound expression
 * which is composed of the operator (op) and the left and
 * right subexpression (lhs and rhs).
 */

 CompoundExp(char op, Expression *lhs, Expression *rhs);

 16

 /**
 * Destructor: CompoundExp
 * Usage: delete exp;
 * ------------------
 * The destructor deallocates all storage associated with
 * this compound expression which includes recursively
 * deallocating its subexpressions.
 */

 virtual ~CompoundExp();

 /**
 * Member function: eval
 * Usage: result = exp->eval(table);
 * ---------------------------------
 * This member function returns the value of this expression
 * by recursively evaluating the left and right subexpressions
 * and joining the results using op.
 */

 virtual int eval(map<string, int>& varTable);

 /**
 * Member function: toString
 * Usage: str = exp->toString();
 * -----------------------------
 * This member function returns a string representation of this
 * compound expression.
 */

 virtual string toString();

 private:
 char op;
 Expression *lhs, *rhs;
};

As written, the Expression classes export constructors, string conversion, and evaluation
functions. There are, however, other operations on expressions that you might at first
think belong in this interface. For example, the main program for the interpreter calls the
function ParseExp, which are in some sense part of the behavior of the expression type.
This observation raises the question of whether the Expression interface should export
those functions as well.

Although ParseExp must be defined somewhere in the code, exporting it through the
Expression interface may not be the best design strategy. In a full-scale interpreter, the
parser requires a significant amount of code—enough to warrant making this phase a
complete module in its own right. In the stripped-down version of the interpreter
presented in this chapter, the code is much smaller. Even so, it makes sense to partition
the phases of the interpreter into separate modules for the following reasons:

1. ˇhe resulting modular decomposition resembles more closely the structure you ǒuld tend
to encounter in practice. Full-scale interpreters are divided into separate modules;

 17

following this convention even in our restricted example clarifies how the pieces
fit together.

2. ˇhe program ǐll be easier to maintain as you add features. Getting the module
structure right early in the implementation of a large system makes it easier for
that system to evolve smoothly over time. If you start with a single module and
later discover that the program is growing too large, it usually takes more work to
separate the modules than it would have earlier in the program evolution.

3. ˇsing separate module for the parser makes it easier to substitute ně implementations.
One of the principal advantages of using a modular design is that doing so makes
it easier to substitute one implementation of an interface for another. For
example, the section on “Parsing” later in this chapter defines two different
implementations of the ParseExp function. If ParseExp is exported by the
Expression interface, it is more difficult to substitute a new implementation than
it would be if ParseExp were exported from a separate module.

For these reasons, the Expression interface exports only the types needed to represent
expressions, along with the constructor and evaluation functions. The ParseExp function
is exported by a separate module.

Implementing the Expression classes
The abstract Expression superclass declares no data members. This is appropriate, as
there is no data that is common to all expression types. Each specific subclass has its
own unique storage requirements—an integer expression needs to store an integer
constant, a compound expression stores pointers to its sub-expressions, and so on. Each
subclass declares those specific data members that are required for its particular
expression type.

To reinforce your understanding of how Expression objects are stored, you can visualize
how the concrete expression structure is represented inside the computer’s memory. The
representation of an Expression object depends on its specific subclass. You can diagram
the structure of an expression tree by considering the three classes independently. An
IntegerExp object simply stores an integer value, shown here as it would exist for the
integer 3:

IntegerExp

3
An IdentifierExp object stores a string representing a variable name, as illustrated here
for the variable x:

IdentifierExp

x

 18

In the case of a CompoundExp object, it stores the binary operator along with two pointers
which indicate the left and right sub-expressions:

CompoundExp

op

Because compound nodes contain sub-expressions that can themselves be compound
nodes, expression trees can grow to an arbitrary level of complexity. The diagram below
illustrates the internal data structure for the expression

y = 3 * (x + 1)

which includes three operators and therefore requires three compound nodes. Although
the parentheses do not appear explicitly in the expression tree, its structure correctly
reflects the desired order of operations.

Representation of the expression y = 3 * (x + 1)

IdentifierExp

x

IntegerExp

1

CompoundExp

=

IdentifierExp

y

CompoundExp

*

CompoundExp

+

IntegerExp

3

 19

Implementing the member functions
The member functions in the expression classes are quite easy to implement. Each
subclass provides a constructor that takes in appropriate arguments and initializes the
data members. The implementation of the toString member function uses the
information from the data members to return a string representation of the expression.

The only remaining task to implement the evaluation member function. Each subclass
has its own strategy for evaluating an expression.

Integer expressions are the easiest. The value of an expression of an integer expression is
simply the value of the integer stored in that node. Thus, the IntegerExp::eval member
function looks like

int IntegerExp::eval(map<string, int>& varTable)
{

 return value;
}

Note that even though an IntegerExp does not use the parameter varTable, it is required
in the prototype for eval member function so that it exactly matches the prototype given
in the Expression superclass.

The next to consider is that of identifiers. To evaluate an identifier expression, you look
up the variable in the variable table and return the associated value as shown here:

int IdentifierExp::eval(map<string, int>& varTable)
{
 map<string, int>::const_iterator found = varTable.find(id);
 if (found == varTable.end()) {
 cerr << id << " is undefined." << endl;
 exit(1);
 }

 return found->second;
}

The last case you need to consider is that of compound expressions. A compound
expression consists of an operator and two sub-expressions, but you must differentiate
two subcases: the arithmetic operators (+, –, *, and /) and the assignment operator (=).

For the arithmetic operators, all you have to do is evaluate the left and right sub-
expressions recursively and then apply the appropriate operation. For assignment, you
need to evaluate the right-hand side and then store that value into the variable table for
the identifier on the left-hand side.

The implementation of the full Expression hierarchy is presented here:

 20

 21

/**
 * File: exp.cpp
 * -------------
 * This file implements the Expression class hierarchy. The public
 * member functions are standard constructor and eval functions
 * that require no individual documentation.
 */

Expression::Expression() {}
Expression::~Expression() {}

IntegerExp::IntegerExp(int val)
{
 value = val;
}

string IntegerExp::toString()
{
 ostringstream oss;
 oss << value;
 return oss.str();
}

int IntegerExp::eval(map<string, int>& varTable)
{
 return value;
}

IdentifierExp::IdentifierExp(string name) : id(name) {}

string IdentifierExp::toString()
{
 return id;
}

int IdentifierExp::eval(map<string, int>& varTable)
{
 map<string, int>::const_iterator found = varTable.find(id);
 if (found == varTable.end()) {
 cerr << id << " is undefined." << endl;
 exit(1);
 }
 return found->second;
}

CompoundExp::CompoundExp(char op, Expression *l, Expression *r)
{

 op = oper;
 lhs = l;
 rhs = r;
}

CompoundExp::~CompoundExp()
{

 delete lhs;
 delete rhs;
}

 22

string CompoundExp::toString()
{

 return '(' + lhs->toString() + ' ' + op + ' '
 + rhs->toString() + ')';
}

int CompoundExp::eval(Map<int> &varTable)
{
 if (op == '=')
 {
 int val = rhs->eval(varTable);
 varTable[lhs->toString()] = val;
 return val;
 }

 int left = lhs->eval(varTable);
 int right = rhs->eval(varTable);
 switch (op) {
 case '+': return left + right;
 case '-': return left - right;
 case '*': return left * right;
 case '/': return left / right;
 }

 cerr << "Illegal operator: '" << op << "'" << endl;
 exit(1);
 return 0; // never gets here, but compiler may not be able to tell
}

Parsing an expression
The problem of building the appropriate parse tree from a stream of tokens is not an easy
one. To a large extent, the underlying theory necessary to build a efficient parser lies
beyond the scope of this text. Even so, it is possible to make some headway on the
problem and solve it for the limited case of arithmetic expressions.

Parsing and grammars
In the early days of programming languages, programmers implemented the parsing
phase of a compiler without thinking very hard about the nature of the process. As a
result, early parsing programs were difficult to write and even harder to debug. In the
1960s, however, computer scientists studied the problem of parsing from a more
theoretical perspective, which simplified it greatly. Today, a computer scientist who has
taken a course on compilers can write a parser for a programming language with very
little work. In fact, most parsers can be generated automatically from a simple
specification of the language for which they are intended. In the field of computer
science, parsing is one of the areas in which it is easiest to see the profound impact of
theory on practice. Without the theoretical work necessary to simplify the problem,
programming languages would have made far less headway than they have.

The essential theoretical insight necessary to simplify parsing is actually borrowed from
linguistics. Like human languages, programming languages have rules of syntax that
define the grammatical structure of the language. Moreover, because programming

 23

languages are much more regular in structure than human languages, it is usually easy
to describe the syntactic structure of a programming language in a precise form called a
grammar. In the context of a programming language, a grammar consists of a set of
rules that show how a particular language construct can be derived from simpler ones.

If you start with the English rules for expression formation, it is not hard to write down a
grammar for the simple expressions used in this chapter. Partly because it simplifies
things a little in the parser, it helps to incorporate the notion of a term into the parser as
any single unit that can appear as an operand to a larger expression. For example,
constants and variables are clearly terms. Moreover, an expression in parentheses acts as
a single unit and can therefore also be regarded as a term. Thus, a term is one of the
following possibilities:

o An integer constant
o A variable
o An expression in parentheses

An expression is then either of the following:

o A term
o Two expressions separated by an operator

This informal definition can be translated directly into the following grammar, presented
in what programmers call BNF, which stands for Backus-Naur form after its inventors
John Backus and Peter Naur:

E → T
E → E op E

T → integer
T → identifier
T → (E)

In the grammar, uppercase letters like E and T are called nonterminal symbols and
stand for an abstract linguistic class, such as an expression or a term. The specific
punctuation marks and the italicized words represent the terminal symbols, which are
those that appear in the token stream. Explicit terminal symbols, such as the parentheses
in the last rule, must appear in the input exactly as written. The italicized words
represent placeholders for tokens that fit their general description. Thus, the notation
integer stands for any string of digits returned by the scanner as a token. Each terminal
corresponds to exactly one token in the scanner stream. Nonterminals typically
correspond to an entire sequence of tokens.

 24

Like the informal rules for defining expressions presented in the section on “A recursive
definition of expressions” earlier in the chapter, grammars can be used to generate parse
trees. Just like those rules, this grammar is ambiguous as written and can generate
several different parse trees for the same sequence of tokens. Once again, the problem is
that the grammar does not incorporate any knowledge of the precedence of the operators
and is therefore not immediately useful in constructing a parser.

Parsing without precedence
Before considering how it might be possible to add precedence to the grammar, it helps
to think about circumventing this problem in a simpler way. What if there were no
precedence in the language? Would that make parsing easier? Throwing away
precedence is not as crazy an idea as it might seem. In the 1960s, Ken Iverson designed a
language called APL (which is an abbreviation for ̌ Programming Languag e), which is
still in use today. Instead of using standard mathematical rules of precedence, APL
operators all have equal precedence and are executed in strictly right-to-left order. Thus,
the expression

2 * x + y

is interpreted in APL as if it had been written

2 * (x + y)

which is exactly the opposite of the conventional mathematical interpretation. To
recover the conventional meaning, you would have to write

(2 * x) + y

in APL. This style of precedence is called Iversonian precedence after its inventor.

The problem of parsing turns out to be much easier for languages that use Iversonian
precedence, mostly because, in them, the grammar for expressions can be written in a
form that is both unambiguous and simple to parse:

E → T
E → T op E

T → integer
T → identifier
T → (E)

This grammar is almost the same as the ambiguous grammar presented in the preceding
section. The only difference is the rule

E → T op E

 25

which specifies that the left-hand operand to any operator must be a simple term.

Writing a parser based on the Iversonian expression grammar requires little more than a
direct translation of the grammar into code. For each of the nonterminal symbols, you
write a function that follows the structure of the grammar. For example, the task of
reading an expression is assigned to a function called ReadE, whose structure follows the
rules for expressions. To parse either of the two expression forms, the ReadE function
must first call the function ReadT to read a term and then check to see whether the next
token is an operator. If it is, ReadE calls itself recursively to read the expression following
the operator and creates a compound expression node from the parts. If the token is not
an operator, ReadE calls saveToken to put that token back in the input being scanned
where it will be read at a higher level of the recursive structure. In much the same way,
the ReadT function implements the rules in the grammar that define a term. The code for
ReadT begins by reading a token and determining whether it represents an integer, an
identifier, or a parenthesized expression. If it does, ReadT returns the corresponding
expression. If the token does not correspond to any of these possibilities, the expression
is illegal.

Parsers that are structured as a collection of functions that call themselves recursively in
a fashion guided by a grammar are called recursive-descent parsers. A complete
implementation of a recursive-descent parser for expressions with Iversonian precedence
appears below. The real work is done by the mutually recursive functions ReadE and
ReadT. The ParseExp function itself simply calls ReadE to read the expression and then
checks to see that there are no extra tokens on the input line.

/**
 * Implementation notes: ParseExp
 * ------------------------------
 * This function calls ReadE to read an expression and then
 * checks to make sure no tokens are left over.
 */

Expression *ParseExp(streamtokenizer& st)
{
 if (!st.hasMoreToken()) return NULL; // end-of-stream reached
 Expression *exp = ReadE(st);
 if (st.hasMoreTokens()) {
 cerr << "Extra tokens encountered while parsing an expression." << endl;
 cerr << "Exiting gracefully" << endl;
 return NULL;
 }

 return (exp);
}

/**
 * Implementation notes: ReadE
 * Usage: exp = ReadE(scanner);
 * ----------------------------
 * This function reads the next expression from the streamtokenizer by
 * matching the input to one of the following grammatical rules:

 26

 *
 * E -> T
 * E -> T op E
 *
 * Both right-hand sides start with T, so the code can begin by
 * calling ReadT. If the next token is an operator, the code
 * creates a compound expression from the term, the operator,
 * and the expression after the operator.
 */

Expression *ReadE(streamtokenizer& st)
{
 Expression *exp = ReadT(st);
 string token = st.nextToken();

 if (IsOperator(token)) {
 Expression *lhs = exp; // given better name to exp
 Expression *rhs = ReadE(st);
 exp = new CompoundExp(token[0], lhs, rhs);
 } else {
 st.saveToken(token);
 }

 return exp;
}

/**
 * Function: ReadT
 * Usage: exp = ReadT(scanner);
 * ----------------------------
 * This function reads a single term from the streamtokenizer by matching
 * the input to one of the following grammatical rules:
 *
 * T -> integer
 * T -> identifier
 * T -> (E)
 *
 * In each case, the first token identifies the appropriate rule.
 */

Expression *ReadT(streamtokenizer& st)
{
 Expression *exp;

 string token = st.nextToken();
 if (isdigit(token[0])) {
 istringstream iss(token);
 int value;
 iss >> value;
 exp = new IntegerExp(value);
 } else if (isalpha(token[0])) {
 exp = new IdentifierExp(token);
 } else if (token == "(") {
 exp = ReadE(st);
 if (st.nextToken() != ")") {
 cerr << "Unbalanced parenthesis encountered." << endl;
 exit(1);
 }
 } else {

 27

 cerr << "Illegal term in expression." << endl;
 exit(1);
 }

 return exp;
}

/**
 * Function: IsOperator
 * Usage: if (IsOperator(token)) . . .
 * -----------------------------------
 * This function returns true if the token is a legal operator.
 */

bool IsOperator(string token)
{
 if (token.length() != 1) return false;
 switch (token[0]) {
 case '+': case '-': case '*': case '/': case '=':
 return true;
 default:
 return false;
 }
}

If all of this seems like magic, you should go through each step in the operation of the
parser on a simple expression of your own choosing. As with many recursive functions,
the code for the parser is simple even though the effect is profound.

