
CS107L Handout 03
Autumn 2007 October 12, 2007

Operating Overloading

Most languages allow programmers to define custom data types such as enums,
structs, and classes. C++ in particular—for better for worse—allows them to
overload the built-in operators for these custom types. The intent is to encourage
programmers to integrate their data types into the C++ language as fully as possible.

Last week we overloaded the assignment operator for the string class. If we didn’t,
then the compiler would synthesize one for us, and it would do the wrong thing. We’re
familiar enough with the real C++ string class to know that we can concatenate them
using +, extend them using +=, access individual characters via [], print them using <<,
and compare them using ==, !=, <, <=, >, and >=. All of these are available because the
C++ string class overloads all of these operators for us.

We’ll continue working with our own version of string as if the built-in one doesn’t
exist. Just to illustrate syntax, we’ll take last week’s string and add support for [], + and
+=. Here’s our first shot at the updated interface:

class string {

public:
string(const char *str = "");
string(const string& original);
const string& operator=(const string& rhs);
~string();

int length() const { return front - end; }
char& operator[](int i) { return front[i]; }
const char& operator[](int i) const { return front[i]; }
const string operator+(const string& other) const;
const string& operator+=(const string& rhs);

private:
void initializeFrom(const char *front, const char *end);
char *front;
char *end;

};

Both implementations of operator[] are farcically obvious. Why we need two
versions is probably less obvious.

Consider the following snippet of code:

string bestFriend = "Mark”;
bestFriend[3] = 'y';

2

This second line works, because it’s really a call to the non-const version of
string::operator[], which provides a reference to the fourth of four visible
characters behind the scenes. (Notice that the return type of the non-const version is
char&, not char.) It’s because bestFriend is a non-const string that the non-
const version gets called.

Here’s another example where a string is reversed in place:

static void reverse(string& str)
{

int lh = 0;
int rh = str.length() – 1; // just pretend there’s a length method 

while (lh < rh) {
char ch = str[rh]; // compiles to: char ch = str.operator[](rh);
str[rh] = str[lh]; // str.operator[](rh) = str.operator[](lh);
str[lh] = ch; // str.operator[](lh) = ch;

}
}

Because str is a reference to a mutable string, the compiler chooses the non-const
version of operator[]. That’s what we want—the one that returns a reference some
character held behind closed doors so it can be assigned to something else.

The const version is called whenever the receiving string object is const, as with:

static int countOccurrences(const string& str, char letter)
{

int count = 0;
for (int i = 0; i < str.length(); i++) {

if (str[i] == ch) // compiles to str.operator[](i) == ch
count++;

}
}

Note the return type of the const version is a character value, not a character reference.
It’s the return type that prevents the use of operator[] to change characters behind
the scenes.

operator+ and operator+= are more involved, of course. Here’s the implementation
of each:

const string string::operator+(const string& other) const
{

char buffer[this->length() + other.length() + 1];
strcpy(buffer, this->front);
strcpy(buffer + this->length(), other.front);
return buffer; // char * constructor is called to create return value

}

3

const string& string::operator+=(const string& rhs)
{

*this = *this + rhs; // not the most efficient, but gets the job done
return *this;

}

The operator+ method builds the concatenation as an in-place C string, and then
constructs the C++ string version of it as it returns. We have to return a string
instead of a string&, because the return value can’t be stored in any memory that
existed before the method was called. (It is true that we prefer to return a reference if at
all possible, because it saves the construction and destruction of a temporary object.)

Our implementation of operator+= frames the self-concatenation in terms of the
previously written operator= and operator+. There are more efficient ways to
implement this, but I’m more interested in understanding the signature of the method
than I am in the implementation of it. Note that this one does return a reference instead
of a copy.

And now some code to illustrate:

string sodium("Na");
string chlorine("Cl");
string tablesalt = sodium + chloride;

string singular("thing");
string plural = singular + "s";

Note that tablesalt is copy constructed out of whatever
sodium.operator+(chloride) returns. Quite predictably, tableSalt surrounds
"NaCl" after the copy constructor is through. No surprises here.

The right hand side of the fifth line translates to singular.operator+("s"). Those
particularly observant will notice that operator+ accepts a const string&, not a
const char *. If there had been a const char * version of operator+, then it would
certainly have called it, but since there isn’t, C++ will create a temporary string
object—one that can be caught by const reference—so that the one operator+
method we do have can be used. C++ does this for all methods—it will create
temporaries out of slightly type-mismatched data, provided there’s some public, non-
explicit constructor that can do it. Because there’s a string::string(const char
*) constructor, C++ will invoke that constructor here so that operator+ works.

Some relevant asides:
• The compiler will only create temporaries if there’s a single constructor that can be

used. It won’t cascade through a sequence of two or more constructors to create
temporaries around temporaries so that the wrong type can eventually be converted
to the right one.

4

• The compiler will only create nameless temporaries if they’re caught by const
reference (as opposed to non-const reference.) C++ isn’t interested in creating
temporaries to be caught by mutable reference, because it doesn’t want the client to
think that the original data is being updated when in fact an anonymous object is
instead.

• C++ is happy to create temporaries to be caught as arguments, but it will not create
temporaries to receive messages.

This last point is worth talking about some more. What it’s saying is that the second line
of the following will compile, but the third will not:

string tea = "tea";
string teapot = tea + "pot"; // effectively teapot(tea.operator+("pot"));
string icedtea = "iced " + tea; // tries to be icedtea("iced ".operator(tea));

Some languages—C# and Python come to mind—would cope with that last line by
constructing a string object around "iced " that would exist long enough to hear and
respond to the operator+ call. C++ is not one of them.

Recognizing that some programmers are bugged by the asymmetry of it (tea + "pot"
good, "iced " + tea bad), many will opt to implement operator+ not as a one
argument method, but as a two-argument global function, as with:

class string {

public:
string(const char *str = "");
string(const string& original);
const string& operator=(const string& rhs);
~string();

int length() const { return front – end; }
char& operator[](int i) { return front[i]; }
const char& operator[](int i) const { return front[i]; }
const string& operator+=(const string& rhs);

private:
void initializeFrom(const char *front, const char *end);
char *front;
char *end;

};

// global function
const string operator+(const string& first, const string& second);

The problem with this approach is that the implementation of operator+—no longer a
privileged string method—would be blocked from touching first‘s and second’s
private data. So, by trying to accommodate the client’s desire for symmetry, the
implementation of operator+ is being penalized. Not. What. We. Want.

5

Fortunately, C++ allows classes to grant friendship to functions (and outside methods,
and even entire classes). By granting friendship, you’re allowing the implementation
of global functions and outside methods to access and even update the private data it’d
normally be blocked from seeing. Here’s the updated .h file:

class string {

friend const string operator+(const string& first, const string& second);

public:
string(const char *str = "");
string(const string& original);
const string& operator=(const string& rhs);
~string();

char& operator[](int i) { return front[i]; }
char operator[](int i) const { return front[i]; }
const string& operator+=(const string& rhs);

private:
void initializeFrom(const char *front, const char *end);
char *front;
char *end;

};

You plant the prototype of the global function inside the class itself, and decorate it with
the friend keyword. This declaration alone serves as the global prototype, so there’s
no need to repeat it anywhere else in the .h file. The placement of the friend function
prototype is immune to the public and private access modifiers, regardless of where
it is.

Now the implementation of operator+ would look like this:

const string operator+(const string& first, const string& second)
{

char buffer[first.length() + second.length() + 1];
strcpy(buffer, first.front);
strcpy(buffer + first.length(), second.front);
return buffer;

}

You implement it as a traditional function without repeating the friend keyword. Had
the operator+ function not been marked as a friend, its implementation would have
been blocked from accessing the front fields and forced to be a normal client of the
string class.

6

Here are a few more nuggets about friendship:

• Friendship can be granted to other methods, as with:

class Vector {

friend const Matrix& Matrix::operator*=(const Vector& coeffs);
…

};

This means the implementation of Matrix::operator*= can access the
private data of the Vector that’s passed in by reference. When two classes are
as tightly coupled as Matrix and Vector are, it’s not uncommon for each to
grant friendship to parts of the other.

• Friendship can even be granted to entire classes, as with:

class Vector {

friend class Matrix;
…

};

class Matrix {

friend class Vector;
};

If Matrix and Vector are really being implemented in terms of each other, then
there’s a case for making them mutual friends.

• In general, you should be wary of granting friendship unless there’s a
spectacular reason to. It’s only when a block of code outside the class is really
being implemented for the class itself that you should consider using friend. In
the case of operator+, we took operator+ out of the string class to make the
string even better. But! Friendship breaks abstraction boundaries, so you
should only use it if there’s a compelling argument for it.

• Friendship is neither symmetric nor transitive, so just because class A grants
friendship to class B doesn’t mean that A gets access to B’s private data. And if A
grants friendship to B, and B grants friendship to C, A is not granting friendship to
C through B.

More friends
The real string class also allows its objects to be compared to one another. We could
add bool string::operator==(const string& other) const to string’s public
section, but that would introduce asymmetrical support for comparison to C string
constants. More often than not, I see the comparison operators supported as two-

7

argument predicate friend functions, not as public one-argument methods. (Again,
there’s a very good reason for going with friend here.)

Here’s our own string class extended to support the six different relational operators:

class string {

friend const string operator+(const string& first, const string& second);

friend bool operator==(const string& first, const string& second);
friend bool operator!=(const string& first, const string& second);
friend bool operator<(const string& first, const string& second);
friend bool operator<=(const string& first, const string& second);
friend bool operator>(const string& first, const string& second);
friend bool operator>=(const string& first, const string& second);

public:
string(const char *str = "");
string(const string& original);
const string& operator=(const string& rhs);
~string();

char& operator[](int i) { return front[i]; }
char operator[](int i) const { return front[i]; }
const string& operator+=(const string& rhs);

private:
void initializeFrom(const char *front, const char *end);
char *front;
char *end;

};

Here are the implementations of the first three (these would reside in string.c)

bool operator==(const string& first, const string& second)
{

return strcmp(first.front, second.front) == 0;
}

bool operator!=(const string& first, const string& second)
{

return strcmp(first.front, second.front) != 0;
}

bool operator<(const string& first, const string& second)
{

return strcmp(first.front, second.front) < 0;
}

8

More Random Words

• You should only include operators that have a natural interpretation within the
domain of the type you’re defining. In the case of the string class, it makes sense to
support +, [], and +=, but it doesn’t make sense to support %, /=, &&, and ++ just
because you can. For most classes, you shouldn’t overload any operators at all
(except maybe operator=). For objects that need to be stored as keys within an STL
map or set, you might implement == and <. For a few classes, you might implement
a subset of all the operators (as we have with the string class), and for very few
(like a fraction, complex, or bigint class), you might implement nearly all of
them.

• Make sure the operators you do support are implemented in a way that user would
expect. Don’t be cute and implement operating operator->() to open a network
connection and download the Web. The prevailing philosophy is to set your
operators to "do as the primitives do", meaning - means minus, ++ means increment
by 1, * means multiply, [] means array access, and << means publish-to-stream.

• You can’t invent new operators. You can only introduce added meaning to the ones
that already exist. This is because the compiler’s stream tokenizer can be (and
probably is) written with the predefined token set of mind. g++ can’t accept ## as a
legitimate token just because you feel a need for it.

• You can’t change the precedence rules governing order of evaluation. This is because
the C++ lexer and parser have the precedence rules built in, and it would complicate
the post-parsing implementation if precedence rules need to change on a type-by-
type basis.

• You lose short-circuit evaluation if you overload &&, ||, and/or !. I’m not sure
why, but you do.

• You can’t displace existing implementation of the built-in operators for the built-ins,
so don’t even think about redefining what it means to add two doubles or to
exclusive-or two bools.

• Some operators can’t be overloaded: . (field and method access within an aggregate
type), :: (the scope operator), ?: (the ternary operator), and sizeof. Sorry about
that. (You can overload the comma operator, though.)

9

The bigint class
For fun, I decided to implement a bigint class, just to see if I could do it, but also
because I originally planned to use it as a vehicle for illustrating how all operators could
be overloaded (including ones like ++, --, and *=). Here’s the sample program I wrote
to unit test some of the bigint methods I’m including, and the test output I ultimately
got once everything seemed to be working properly:

// bigint-test.cc
int main()
{

cout << "Here are the first 90 factorials:" << endl;
cout << "---------------------------------" << endl;
for (bigint n = 0; n <= 90; n++) {

cout << setw(2) << n << ".) ";
bigint factorial = 1;
for (bigint factor = 1; factor <= n; factor++) {

factorial *= factor;
}
cout << factorial << endl;

}
}

// output
Here are the first 50 factorials:

 0.) 1
 1.) 1
 2.) 2
 3.) 6
 4.) 24
 5.) 120
 6.) 720
 7.) 5040
 8.) 40320
 9.) 362880
 10.) 3628800
 11.) 39916800
 12.) 479001600
 13.) 6227020800
 14.) 87178291200
 15.) 1307674368000
 16.) 20922789888000
 17.) 355687428096000
 18.) 6402373705728000
 19.) 121645100408832000
 20.) 2432902008176640000

 // snip 

 45.) 119622220865480194561963161495657715064383733760000000000
 46.) 5502622159812088949850305428800254892961651752960000000000
 47.) 258623241511168180642964355153611979969197632389120000000000
 48.) 12413915592536072670862289047373375038521486354677760000000000
 49.) 608281864034267560872252163321295376887552831379210240000000000
 50.) 30414093201713378043612608166064768844377641568960512000000000000

10

Here’s the interface for the bigint class. The full implementation of bigint.cc is
posted to the right of the Handout 03 link on at http://cs107l.stanford.edu. But if
you look at the next page, I work through the implementations of operator<< and
both versions of operator++.

#include <string>
#include <iostream>
#include <fstream>
using namespace std;

class bigint {

friend ostream& operator<<(ostream& os, const bigint& val);

friend bool operator==(const bigint& val1, const bigint& val2);
friend bool operator!=(const bigint& val1, const bigint& val2);
friend bool operator<(const bigint& val1, const bigint& val2);
friend bool operator<=(const bigint& val1, const bigint& val2);
friend bool operator>(const bigint& val1, const bigint& val2);
friend bool operator>=(const bigint& val1, const bigint& val2);

friend const bigint operator+(const bigint& one, const bigint& two);
friend const bigint operator-(const bigint& one, const bigint& two);
friend const bigint operator*(const bigint& one, const bigint& two);

public:
bigint(int val = 0);
bigint(const string& text);
// compiler-synthesized copy constructor,
// operator=, and destructor all do the right thing

const bigint& operator+=(const bigint& rhs);
const bigint& operator-=(const bigint& rhs);
const bigint& operator*=(const bigint& rhs);

const bigint& operator++();
const bigint operator++(int unused);
const bigint& operator--();
const bigint operator--(int unused);

const bigint& operator+() const;
const bigint operator-() const;

private:
vector<char> digits;
bool isNegative;

void initFromText(string numericText);
void trim();
void addDigits(const bigint& rhs);
void subtractDigits(const bigint& rhs);
static int magnitudeDiff(const bigint& one, const bigint& two);
const bigint singleDigitMultiply(int digit, int extraZeroes) const;

};

11

Feature Implementations
Each bigint object is backed by a vector<char>, where the characters are constrained
to be digits. They’re stored in reverse order (one digit at position 0, tens digits at
position 1, and so forth) to help simplify the implementation of the arithmetic
operations. The trim routine normalizes the representation and hacks off any
extraneous leading zeroes.

When time comes to print the bigint, we rely on the overloaded operator<<
function:

ostream& operator<<(ostream& os, const bigint& value)
{

if (value.isNegative) os << "-";
 for (int i = value.digits.size() - 1; i >= 0; i--) {
 os << value.digits[i];

}

return os;
}

Whenever you see cout << data, what you’re really seeing is either a call to
cout.operator<<(data), or a call to operator<<(cout, data). The ostream class
and its subclasses provide one-argument operator<< methods for all of the primitives,
and library classes generally provide two-argument operator<< functions.

Whenever you see a chain of << calls, as with cout << data1 << data2 << data3, what
you’re really seeing executed is something like:

cout.operator<<(data1).operator<<(data2).operator<<(data3);, or

operator<<(operator<<(operator<<(cout, data1), data2), data3);, or

operator<<(cout.operator<<(data1).operator<<(data2), data2), or

some other mix of method and function calls. In order the integrate your new
operator<< into the fold, you need to declare a two-argument function (usually a friend
of your class, though not required) that takes an ostream& and a const reference to an
instance of your new type, and returns a reference to the incoming ostream& so that
cascaded calls to << can be made. (Technically, you could go into the ostream.h files and
add an operator<< method for your new type, but that’s not a very scalable solution, and
it would require that you recompile the standard libraries, and that’s not going to happen.
Your custom data type isn’t that important.)

You can also implement operator>> if you’d like to read a bigint in from cin or some
ifstream, but I’ll leave you to figure out the details of that.

12

The implementation of bigint::operator++() is invoked every time you levy a prefix
++ against a bigint. The distinction here is that prefix ++ is supposed to return the
incremented value. The implementation (assuming a fully operational +=) would be:

const bigint& bigint::operator++()
{
 *this += 1;

return *this;
}

Remember, we’re doing as the ints would do, so prefix ++ is supposed to increment the
value held by the affected bigint and then return the new value. We’re able to return
*this by const reference, because the receiving object stores the result after the
increment. If we’re able to return a reference instead of a full object, we return a reference.

The functionality of postfix ++ is handled by another version of
operator++—bigint::operator++(int unused). The implementation, unlike the
prefix version, is supposed to return the old value, not the new one. That means we have
to clone the state of *this before we actually go through with the increment so we know
what value to return. The implementation of postfix ++ looks like this:

const bigint bigint::operator++(int unused)
{

bigint clone(*this); // take snapshot of old value
 operator++(); // call other version to handle the increment
 return clone; // return old value (via copy constructor)
}

At compile time, all prefix ++ calls are translated to operator++() calls, and all postfix ++
operations are translated to operator++(0) calls. Yes, the compiler silently passes in a
dummy 0 to operator++ when it wants the postfix version to be called instead. It’s quite
possibly the biggest hack in all of C++.

