
CS107L Handout 02
Autumn 2007 October 5, 2007

Copy Constructor and operator=
Much of the surrounding prose written by Andy Maag, CS193D instructor from years ago.

The compiler will supply a default (zero-argument) constructor if the programmer
doesn’t.  This default constructor will call each data member’s default constructor in
order to fully initialize the object.  If the programmer wishes to displace the default
constructor, he simply provides one.  The same thing goes for the destructor.

There is another type of compiler-synthesized constructor—the copy constructor, and
it's called whenever an object needs to be constructed from an existing one.

Suppose we had a class to encapsulate strings, and we call this class string.  The details
of the dynamic memory management are annoying enough that we might want to
abstract those details away.

// string.h, take one
class string {

public:
string(const char *str = "");
~string();

private:
initializeFrom(const char *front, const char *end)
char *front;
char *end;

};

// string.cc take one
string::string(const char *str)
{

initializeFrom(str, str + strlen(str));
}

string::~string()
{

delete[] front;
}

void string::initializeFrom(const char *front, const char *end)
{

int length = end - front;
this->front = new char[length + 1];
this->end = this->front + length;
strncpy(this->front, front, length + 1); // include the '\0'

}



2

For this example, we’ll assume that the string constructor allocates space for the
characters, and the destructor frees up that same space.  Internally, the are two iterator-
like points that point to the leading character and the null character at the end.  The

The copy constructor may be called when doing simple initializations of a string object:

string professor("Professor Plum");
string clone = professor; // copy constructor gets called.

More importantly, the copy constructor is called when passing an object by value, or
returning an object by value.  For instance, we might have a function that translates a
sentence to Pig Latin:

static string translate(string sentence)
{

// tokenizes, rotates, and rebuilds translation
}

We might declare a string and call the translate function like this:

string excuse("I need an extension because I forgot I was in CS107L.");
cout << "Translation: \"" << translate(excuse) << "\"" << endl;

When passing the sentence object, the copy constructor is called to copy the string
object from the calling function to the local parameter in the translate function.
Because we did not specify a copy constructor, the default copy constructor is called.  In
this case, it’s just not what we want.

Default Copy Constructor
The default copy constructor does a member-wise copy of all the primitive and
embedded object fields.  For our string class, the default copy constructor simply
copies the two pointers that are embedded inside, as it would for any set of pure
primitive types.  However, the characters themselves are not copied.  This is called a
shallow copy, because it only copies the data down to one level.  In memory, what we’d
have would look like this:

excuse

sentence

I n e e d L . \0



3

This causes a problem because now the two objects share the same characters data.  If
we changed any of the characters within the sentence object, it would change the
characters in the excuse as well.  What’s worse is that after the translate function
exits, the string destructor is called on the sentence object, which frees the character
array more officially owned by excuse.  Bad times.

What We Want: The Deep Copy
In order to avoid potential disasters like this, what we want is a deep copy of the string
object.  That means we want the copy constructor to synthesize of new character array
that’s a logical clone of the original, but memory independent of it.

What we want is a picture in memory which looks like this:

Now we can manipulate the characters within the sentence object and not affect the
original excuse object.  When the character array within the copy is freed on exit the
translate function, the original string object is still going strong.  The copy
constructor (be it the bad compiler-provided one or the correct user-defined one) is also
invoked when returning an object by value.  We didn’t even begin to hit on those
problems, though they are effectively the same.

Declaring a Copy Constructor
In order to provide deep-copy semantics for our string object, we need to declare our
own copy constructor.  A copy constructor takes a constant reference to an object of the
class’ type as a parameter and has no return type.  We would declare the copy
constructor for the string within the class declaration like this:

// string.h take two
class string {

public:
string(const char *str = "");
string(const string& original);
~string();

private:
void initializeFrom(const char *front, const char *end);
char *front;
char *end;

};

excuse

sentence

I n e e d L . \0

I n e e d L . \0



4

We’d implement the copy constructor like this:

string::string(const string& original)
{

initializeFrom(original.front, original.end);
}

You should provide a copy constructor for any class for which you want deep copy
semantics and the compiler will do the wrong thing.  If the class only has data members
that are integral types (that is, it contains no pointers or open files) and/or direct objects
(which have properly implemented copy constructors), you can omit the copy
constructor and let the default copy constructor handle it.

Limitations
The copy constructor is not called when doing an object-to-object assignment.  For
instance, if we had the following code, we would still only get a shallow copy:

string betty("Betty Rubble");  // Initializes string to "Betty Rubble"
string wilma;        // Initializes string to empty string
wilma = betty;

This is because the assignment operator is being called instead of the copy constructor.
By default, the assignment operator does a member-wise copy of the object, which in
this case gives a shallow copy.  However, C++ gives us the ability to override the default
assignment operator, and we’ll learn that today too.

Incidentally, there may be cases when you want to prevent anyone from copying a class
object via the copy constructor.  By declaring a copy constructor as a private
constructor within the class definition and not implementing it, the compiler will prevent
the passing of objects of that class by value.

Assignment
It is possible to redefine the assignment operator for a class.  The assignment operator
must be defined as a member function in order to guarantee that the left-hand operand
is an object.  By default, the assignment operator is defined for every class, and it does a
member-wise copy from one object to another.  This is a shallow copy, so the
assignment operator should generally be redefined for any class that contains pointers.
You can declare the assignment operator as a private operator and not provide an
implementation in order to prevent object-to-object assignment.

The key difference between assignment and copy construction is that assignment
possibly involves the destruction of embedded resources.  We need to overload the
assignment operator whenever we want to guarantee that memory (or perhaps other
resources) are properly disposed of before they’re replaced.  The syntax for the
assignment method is a trifle quirky, but it's just that: syntax, and you just treat the



5

prototype as boilerplate notation and otherwise implement the method as you would
any other.

// string.h take three
class string {

public:
string(const char *str = "");
string(const string& original);
const string& operator=(const string& rhs);
~string();

private:
void initializeFrom(const char *front, const char *end);
char *front;
char *end;

};

// addition to string.cc

const string& string::operator=(const string& rhs)
{

if (this != &rhs) {
delete[] front;
initializeFrom(rhs.front, rhs.end);

}

return *this;
}

A good way to look at the assignment operator:  Think of it as destruction followed by
immediate reconstruction.  The delete[] would appear in the destructor as well,
whereas the next three lines are very constructor-ish.

Caveats 1: The this != &rhs checks to see whether we're dealing with a self-
assignment.  An expression of the form me = me is totally legal, but there's
no benefit in actually destroying the object only to reconstruct it only to
take the same form.  In fact, the delete[] line would actually release the
very memory that we need on the very next line.

Caveat 2: The return type is const string&, and the return statement is
return *this, because cascaded assignments involving strings should
behave and propagate right to left just as they would with ints or
doubles.

string heroine("ginger");
string cluck("babs");
string quack("rhodes");
string meanie("mrs. tweety");

meanie = quack = cluck = heroine;
cout << heroine << cluck << quack << meanie << endl;
// should print: gingergingergingerginger



6

Problem
Consider the following C++ struct definitions:

struct scooby {

  scooby(const string& jones) { fred = jones; daphne = new string(fred); }
  scooby(const scooby& blake) : daphne(NULL), fred(blake.fred) {}
  ~scooby() { delete daphne; }

  string fred;
  string *daphne;
};

struct dooby {

  dooby(const string& shaggy,
        const string velma) : doo(velma), scrappy(shaggy) {}

  const string scrappy;
  scooby doo;
};

Assume that the whereareyou function has just been called.  Specify the ordering for all
the calls to the string memory management routines: the zero-argument constructor,
the (char*) constructor, the copy constructor, the operator= assignment operator, and
the destructor.

static void whereareyou(const string& astro, const string& dino)
{

dooby lassie(astro, dino);
dooby tiger(lassie);

}

Answer:
• copy constructor initializing lassie.velma out of dino
• copy constructor initializing lassie.scrappy out of shaggy
• zero arg constructor initializing lassie.doo.fred
• operator= reassigning lassie.doo.fred to be a clone of jones
• copy constructor initializing a dynamically allocated string (address assigned to

lassie.doo.daphne)
• destructor to dispose of local paramter velma
• copy constructor initializing tiger.scrappy to be a clone of lassie.scrappy
• copy constructor for tiger.doo.fred
• destructor disposing of tiger.doo.fred
• destructor disposing of tiger.scrappy
• destructor disposing of heap-based string pointed to by lassie.doo.daphne
• destructor disposing of lassie.doo.fred
• destructor disposing of lassie.scrappy


