CS107L Handout 04
Autumn 2007 October 19, 2007

Custom STL-Like Containers and Iterators

This handout is designed to provide a better understanding of how one should write
template code and architect iterators to traverse containers. The entire discussion centers
on the design and implementation of a singly linked list—something that is officially
included in the STL. However, we rewrite a subset of that functionality here, because the
linked list is the least complicated class of all classes requiring custom iterator
implementations. Let’s get to it.

Design of mylist to look and feel like the STL 1ist class

If we're going to have a linked list, then there’s no denying the need for a link list node.

template <typename T> class mylist; // forward declare
template <typename T> class mylist iterator; // forward declare

template <typename T>
class mylist_node {

friend class mylist<T>;
friend class mylist iterator<T>;

private:
mylist node(const T& t, mylist node<T> *next) : elem(t), next(next) {}
~mylist node() { delete next; }
T elem;
mylist node<T> *next;

}i

If, for just a moment, you rid of the constructor, you reduce the mylist_node to
nothing more than a normal struct that just happens to mark everything as private.
Naturally, to mark everything as private is to block everyone out, and for the most
part, that's what we want here. However, mylist, mylist_node, and
mylist_iterator are clearly intertwined, so the mylist_node<T> class allows any
instance of mylist<T> and mylist_ iterator<T> to examine the private data of a
mylist_node<T> instance. This permission comes in the form of an explicit
friendship statement placed at the front of the mylist_node definition.



Some key (or at least interesting) observations:

1.

The public and private keywords have absolutely no influence over
friendship. The very fact that the mylist_node granted friendship is
enough to give all mylist and mylist_iterator full access to everything
mylist_node-related. Note that the friendship is being offered to the classes
themselves. That means that all instance and class methods have full access to
any instance field of the mylist_node—specifically, mylist and
mylist_iterators can directly access any and all private data members
and, had there been any, call any private methods as well.

Understand that the friendship is being granted to classes embracing the same
exact type. mylist_node<string> grants friendship to mylist<string>,
mylist_node<film *> grants friendship to mylist<film =*>, and so forth.
Technically, mylist_node<string> couldn’t give a flying feather about
mylist<film *>, SO it sees no reason to grant friendship to all things
mylist—just mylist<string>. This should be clear, because the lines
granting friendship include the <T>.

friend class mylis<:;;>
friend class mylist~ eratoé:::>

I chose to inline the implementation of the constructor and destructor, but I'm
only getting away with it here because there are so short and so relatively
obvious. Had I preferred to place the implementations in the corresponding
.cc file instead, I'd have to have written them as follows:

template <typename T>
mylist node<T>::mylist node(const T& t, mylist node<T> *next) : elem(t), next(next)

{

// nothing needed, as everything is taken care of by the initialization list

}

template <typename T>
mylist node<T>::~mylist node() { delete next; }

}

4.

Remember that the compiler automatically generates a copy constructor and
an operator= method for us if we don’t explicitly mention it in the class
definition. Since we don’t mention either here, we get those compiler-
synthesized versions (and they’re automatically public).



3

Who would have thought that the mylist_node template class could be so very
interesting? Let’s start small and pretend that anything and everything relying on the
existence of a true iterator type isn’t included.

template <typename T>
class mylist {

public:
mylist() : head(NULL), tail(NULL) {}
~mylist() { delete head; }

bool empty() const { return head == NULL; }
void push back(const T& elem);

private:
mylist node<T> *head, *tail;

}i

This doesn’t even come close to the real linked list, but my ultimate goal here isn’t to
remind you what a linked list should do and how it works, but rather to motivate and
implement an iterator. The mechanics of threading together a linked list is either old
hat by now, or if not, can be reviewed in a matter of 15 minutes. The only difference
between our linked list and the ones you’ve dealt with in previous courses is the
language we’re building them in. The logistics of next pointers and NuLL checks and
whatnot are exactly the same. Notice I've inlined the implementation of the constructor,
the destructor, and the empty method. Here’s what the mylist.cc file would look like
if this were all mylist was defined to be.

template <typename T>
void mylist<T>::push back(const T& elem)
{
mylist node<T> *newnode = new mylist node<T>(elem, NULL);
if (head == NULL) {
head = newNode;
} else {
tail->next = newNode;

}

tail = newNode;

}

The details of linked list insertion and deletion are always tricky, no matter what
language they’re in. If you doubt the implementation, then you should trace each
method to ensure that all cases (empty list, list of length one, and all other lists) are
properly handled. The most interesting element of the implementation—at least from a
C++ standpoint—is the call to the mylist_node<T> constructor—a call that’s permitted
only because the mylist class was granted that friendship mentioned earlier.

Now that we have the basics of the linked list in place, it’s high time we introduce the
iterator so that built-in STL algorithms like for_each and f£ind can traverse the
elements of our mylist from front to back and making it appear as if the elements



4

inside the mylist are all laid out sequentially in memory. A terribly bad design would
extend our current definition of the mylist class to include very buggy implementations

of begin and end methods. Buggy, buggy, buggy, buggy!

template <typename T>
class mylist {

public:
typedef T *iterator;

public:
mylist() : head(NULL), tail(NULL) {}
~mylist();

bool empty() const { return (head == NULL); }
void push back(const T& elem);

iterator begin() { return (head == NULL ? NULL : &head->elem);
iterator end() { return NULL; }

private:
mylist node<T> *head, *tail;

}i

}

Such an implementation would assume that we’ve absolutely no other choice for the
typedef. If begin needs to return the 'address' of the first element and this 'address'
should respond to * and ++ as a true pointer would, one might think there’s really

nothing else we can do.

Perhaps it’s the best that can be done; but if so, then this whole iterator thing would be
pretty lame—particularly lame here, since there’s no way the individual elements of a list
could possibly be accessed by an iterator that assumes all elements are organized side by

side in memory. To drive this point home, consider the following:

mylist<string> ivies;
ivies.push back("Harvard");
ivies.push back("Yale");
ivies.push back("Princeton");
ivies.push back("Penn");

mylist<string>::iterator begin = ivies.begin();
mylist<string>::iterator end = ivies.end();

while (begin != end) {

if (*begin == "Stanford") {
cout << "Stanford’s an Ivy." << endl;
return;

}

++begin;

}

cout << "They’re all snobs anyway." << endl;



5

Algorithmically, the code snippet is sound, and yet it doesn’t work—in fact, it seg faults.
The blame can’t be pinned on the code snippet itself, but rather the current definition of
the mylist<string>::iterator. How can a local string *—that’s all the
iterator is in this example—behave any differently than a regular pointer? All those
++begin instructions are going to advance the pointer through memory as if there’s an
array of strings there, and that’s just not the case. The iterator doesn’t know how
to advance to the next element in the sequence, because the instructions it follows to
advance—operator++ being that instruction—just tell it to march sizeof (string)
bytes ahead. The iterator we want here is something that knows how to update itself
to point to the next element in the list. A normal pointer can’t do that, but a class that
responds to clever implementations of operator* and operator++ can.

The idea of returning a class as an iterator seems a little off. However, as long as the
type being returned responds to pointer syntax and exhibits normal pointer semantics,
we shouldn’t really care whether the iterator is a true pointer or something that just

pretends to be. We're interested in appearances—once again, it all comes down to looks.
Shallow!

At this point, we can update the mylist template to export a new iterator type—one
that has a better chance of visiting all of the nodes:

template <typename T>
class mylist {

public:
typedef mylist iterator<T> iterator;

public:
mylist() : head(NULL), tail(NULL) {}
~mylist() { delete head; }

bool empty() const { return head == NULL; }
void push back(const T& elem);

iterator begin();
iterator end();

private:
mylist node<T> *head, *tail;

}i

Notice the new typedef for iterator—there’s a big difference. begin and end now
return an instance of this mylist_iterator<T> thing—a type we’ll more fully flesh out
in a page or two.



6

While the details of how the mylist_iterator aren’t clear yet, we do know that the

code snippet we wrote earlier will now be translated / interpreted as follows:

~=a
-
-

-
-
-
-
-
-
-
-
-

ivies.push_back("Harvard");

ivies.push back("Yale"); what we write
ivies.push_back("Princeton");
ivies.push back("Penn"); 7

4
7

mylist<string>::iterator begin = ivies.begin();,/,
mylist<string>::iterator end = ivies.end(); i
4

d
e

while (begin != end) { R4
if (*begin == "Stanford") { i
cout << "Stanford’s an Ivy." /// /%wlist<string> ivies;
<< endl; e // ivies.push back("Harvard");
return; e ,/ ivies.push back("Yale");
} e )/ ivies.push_back("Princeton");
++begin; K ivies.push back("Penn");
} ’
/’ mylist<string>::iterator begin
cout << "They’re all snobs anyway.",’ mylist<string>::iterator end =
<< endl; )/ . .
)/ while (begin.operator!=(end)) {
) if (begin.operator*() == "Stanford") {
cout << "Stanford’s an Ivy."
how the compiler interprets it when << endl;
mylist<string>::iterator isa N return;
direct class instance. begin.operator++();

'~ }

~o << endl;

~

ivies.begin();
ivies.end();

~._ cout << "They’re all snobs anyway."

The placement of the new and improved mylist<string>::iterator in this context

forces it to respond to operator!=, operator*, and operator++ in order to make the

compiler happy. And because we want the iterator to traverse the mylist<string>

and identify references to all of the strings inside, the implementations of

operator!=, operator*, and operator++ need to mimic whatever functionality
comes when these operators are applied to real pointers. Naturally, we also want the
begin iterator to point to the first element of the list, the next iterator to somehow

associate with the second element in the list, and so on.



Therefore, we need the following:

template <typename T>
class mylist_iterator : public iterator<forward iterator_tag, T> {

friend class mylist<T>;

public:
T& operator*();
const mylist iterator<T>& operator++();
bool operator!=(const mylist iterator<T>& other) const;

private:
mylist node<T> *pointee;
mylist iterator(mylist node<T> *pointee) : pointee(pointee) {}

}s

template <typename T>
T& mylist iterator<T>::operator*()

{
}

return pointee->elem;

template <typename T>
const mylist iterator<T>& mylist iterator<T>::operator++()

{
assert(pointee != NULL);
pointee = pointee->next;
return *this;

}

template <typename T>
bool mylist iterator<T>:: operator!=(const mylist iterator<T>& other) const

{
}

return this->pointee != other.pointee;

Forget about public versus private for the moment; pay attention to what this
mylist_iterator<T> class encapsulates and how it behaves like a pointer to an object
of type T. Each instance of this mylist_iterator<T> class wraps around a pointer to a
mylist_node<T>. operator++ doesn’t advance the iterator to point to the next
node in sequential memory, but instead to point to the next node in the list (note the
update setting pointer to pointer->next). operator!= mismatches
mylist_iterators if and only if the mylist_node<T> *s they surround are different.
operator* returns a reference to the T object embedded inside the node whose address
it’s storing.

You'll should make note of my decision to make all three operator methods public;
marking them as private would prevent client code from handling iterators
produced by the begin and ena methods. See the private constructor? That means no
one except the mylist<T> class can create mylist_iterator<T>'s around a
mylist_node<T> *. (The copy constructor, operator= method, and destructor are all
public and compiler-synthesized, and the compiler-synthesized ones work just fine.)



The implementation of operator++ is such that the following idiom would carry the
iterator over all of the mylist node<T> *S of amylist<T>. begin would need to
create an iterator storing the very first address, and then operator++ would update the
iterator to hold the next field, and then the next next field, and then the NEXT next
field, and so on. Eventually, the iterator would be updated to store a NuLL and
match the iterator produced by the ena method: That would be the signal that we've
reached the end of the list.

Assuming this is all true, it makes the implementation of begin and end pretty obvious:

template <typename T>
class mylist {

public:
typedef mylist iterator<T> iterator;

public:
mylist() : head(NULL), tail(NULL) {}
~mylist() { delete head; }

bool empty() const { return head == NULL; }
void push back(const T& elem);

iterator gin() { return mylist iterator<T>(head); }
iterator () { return mylist iterator<T>(NULL); }
private:

mylist node<T> *head, *tail;

}i

The Full mylist<T> Definition

If you inspect the assn-7-ss-and-btmap starter folder, you'll see a subfolder name
list-iterator-code. Within that directory is an even more robust definition and
implementation of mylist. This mylist defines two £ind methods (one const, one
non-const) and how you can use a static template method to unify their
implementations—implementations while are logically identical. It also shows you how
to define the mylist_iterator template class so that both iterator and
const_iterator can be supported. (Note that you are not required to implement true
iterators for the btree_map. But you're certainly welcome and even encouraged to try.)



